IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v168y2016i1d10.1007_s10957-015-0706-z.html
   My bibliography  Save this article

A Nature Inspired Parameter Tuning Approach to Cascade Control for Hydraulically Driven Parallel Robot Platform

Author

Listed:
  • Vladimir Stojanovic

    (University of Kragujevac)

  • Novak Nedic

    (University of Kragujevac)

Abstract

This paper presents the optimal tuning of cascade load force controllers for a parallel robot platform. A parameter search for the proposed cascade controller is difficult because there is no methodology to set the parameters and the search space is broad. The proposed parameter search scheme is based on a bat algorithm, which attracts a lot of attention in the evolutionary computation area due to the empirical evidence of its superiority in solving various nonconvex problems. The control design problem is formulated as an optimization problem under constraints. Typical constraints, such as mechanical limits on positions and maximal velocities of hydraulic actuators as well as on servo-valve positions, are included in the proposed algorithm. The simulation results indicate that the proposed optimal tuned cascade control is effective and efficient. These results clearly demonstrate that applied techniques exhibit a significant performance improvement over classical tuning methods.

Suggested Citation

  • Vladimir Stojanovic & Novak Nedic, 2016. "A Nature Inspired Parameter Tuning Approach to Cascade Control for Hydraulically Driven Parallel Robot Platform," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 332-347, January.
  • Handle: RePEc:spr:joptap:v:168:y:2016:i:1:d:10.1007_s10957-015-0706-z
    DOI: 10.1007/s10957-015-0706-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0706-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0706-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdelmadjid Recioui, 2012. "Sidelobe Level Reduction in Linear Array Pattern Synthesis Using Particle Swarm Optimization," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 497-512, May.
    2. Y. L. Zheng & S. L. Nie & H. Ji & Z. Hu, 2013. "Application of a Fuzzy Programming Through Stochastic Particle Swarm Optimization to Assessment of Filter Management Strategies in Fluid Power System Under Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 276-286, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Liu & Siyuan Tian & Dingyu Xue & Tao Zhang & YangQuan Chen, 2019. "Industrial feedforward control technology: a review," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2819-2833, December.
    2. Xiaofeng Wang & Shu Guo & Jian Shen & Yang Liu, 2020. "Optimization of preventive maintenance for series manufacturing system by differential evolution algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 745-757, March.
    3. Shuai Zhang & Yangbing Xu & Wenyu Zhang & Dejian Yu, 2019. "A new fuzzy QoS-aware manufacture service composition method using extended flower pollination algorithm," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2069-2083, June.
    4. Zhonglei Liu & Xuekun Li & Dingzhu Wu & Zhiqiang Qian & Pingfa Feng & Yiming Rong, 2019. "The development of a hybrid firefly algorithm for multi-pass grinding process optimization," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2457-2472, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albanese Claudio & Armenti Yannick & Crépey Stéphane, 2020. "XVA metrics for CCP optimization," Statistics & Risk Modeling, De Gruyter, vol. 37(1-2), pages 25-53, January.
    2. Sabelfeld Karl K. & Levykin Alexander I. & Kireeva Anastasiya E., 2015. "Stochastic simulation of fluctuation-induced reaction-diffusion kinetics governed by Smoluchowski equations," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 33-48, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:168:y:2016:i:1:d:10.1007_s10957-015-0706-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.