IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v157y2013i3d10.1007_s10957-012-0222-3.html
   My bibliography  Save this article

Global Convergence of a Closed-Loop Regularized Newton Method for Solving Monotone Inclusions in Hilbert Spaces

Author

Listed:
  • H. Attouch

    (Université Montpellier II)

  • P. Redont

    (Université Montpellier II)

  • B. F. Svaiter

    (IMPA)

Abstract

We analyze the global convergence properties of some variants of regularized continuous Newton methods for convex optimization and monotone inclusions in Hilbert spaces. The regularization term is of Levenberg–Marquardt type and acts in an open-loop or closed-loop form. In the open-loop case the regularization term may be of bounded variation.

Suggested Citation

  • H. Attouch & P. Redont & B. F. Svaiter, 2013. "Global Convergence of a Closed-Loop Regularized Newton Method for Solving Monotone Inclusions in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 624-650, June.
  • Handle: RePEc:spr:joptap:v:157:y:2013:i:3:d:10.1007_s10957-012-0222-3
    DOI: 10.1007/s10957-012-0222-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0222-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0222-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samir Adly & Hedy Attouch & Van Nam Vo, 2023. "Convergence of Inertial Dynamics Driven by Sums of Potential and Nonpotential Operators with Implicit Newton-Like Damping," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 290-331, July.
    2. B. Abbas & H. Attouch & Benar F. Svaiter, 2014. "Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 331-360, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:157:y:2013:i:3:d:10.1007_s10957-012-0222-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.