IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v155y2012i3d10.1007_s10957-012-0113-7.html
   My bibliography  Save this article

Coverage Maximization with Autonomous Agents in Fast Flow Environments

Author

Listed:
  • Andrew Kwok

    (Opera Solutions)

  • Sonia Martínez

    (9500 Gilman Drive)

Abstract

This work examines the cooperative motion of a group of autonomous vehicles in a fast flow environment. The magnitude of the flow velocity is assumed to be greater than the available actuation to each agent. Collectively, the agents wish to maximize total coverage area defined as the set of points reachable by any agent within T time. The reachable set of an agent in a fast flow is characterized using optimal control techniques. Specifically, this work addresses the complementary cases where the static flow field is smooth, and where the flow field is piecewise constant. The latter case arises as a proposed approximation of a smooth flow that remains analytically tractable. Furthermore, the techniques used in the piecewise constant flow case enable treatment for obstacles in the environment. In both cases, a gradient ascent method is derived to maximize the total coverage area in a distributed fashion. Simulations show that such a network is able to maximize the coverage area in a fast flow.

Suggested Citation

  • Andrew Kwok & Sonia Martínez, 2012. "Coverage Maximization with Autonomous Agents in Fast Flow Environments," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 986-1007, December.
  • Handle: RePEc:spr:joptap:v:155:y:2012:i:3:d:10.1007_s10957-012-0113-7
    DOI: 10.1007/s10957-012-0113-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0113-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0113-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:155:y:2012:i:3:d:10.1007_s10957-012-0113-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.