IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v149y2011i1d10.1007_s10957-010-9777-z.html
   My bibliography  Save this article

The Q Method for Symmetric Cone Programming

Author

Listed:
  • Farid Alizadeh

    (Rutgers, The State University of New Jersey)

  • Yu Xia

    (University of Guelph)

Abstract

The Q method of semidefinite programming, developed by Alizadeh, Haeberly and Overton, is extended to optimization problems over symmetric cones. At each iteration of the Q method, eigenvalues and Jordan frames of decision variables are updated using Newton’s method. We give an interior point and a pure Newton’s method based on the Q method. In another paper, the authors have shown that the Q method for second-order cone programming is accurate. The Q method has also been used to develop a “warm-starting” approach for second-order cone programming. The machinery of Euclidean Jordan algebra, certain subgroups of the automorphism group of symmetric cones, and the exponential map is used in the development of the Newton method. Finally we prove that in the presence of certain non-degeneracies the Jacobian of the Newton system is nonsingular at the optimum. Hence the Q method for symmetric cone programming is accurate and can be used to “warm-start” a slightly perturbed symmetric cone program.

Suggested Citation

  • Farid Alizadeh & Yu Xia, 2011. "The Q Method for Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 149(1), pages 102-137, April.
  • Handle: RePEc:spr:joptap:v:149:y:2011:i:1:d:10.1007_s10957-010-9777-z
    DOI: 10.1007/s10957-010-9777-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-010-9777-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-010-9777-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. XIA, Yu, 2007. "A Newton's method for perturbed second-order cone programs," LIDAM Reprints CORE 1955, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:149:y:2011:i:1:d:10.1007_s10957-010-9777-z. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.