IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v130y2006i2d10.1007_s10957-006-9108-6.html
   My bibliography  Save this article

Characterizations of the Solution Sets of Convex Programs and Variational Inequality Problems

Author

Listed:
  • Z. L. Wu

    (National Cheng Kung University)

  • S. Y. Wu

    (National Cheng Kung University)

Abstract

For a convex program in a normed vector space with the objective function admitting the Gâteaux derivative at an optimal solution, we show that the solution set consists of the feasible points lying in the hyperplane whose normal vector equals the Gâteaux derivative. For a general continuous convex program, a feasible point is an optimal solution iff it lies in a hyperplane with a normal vector belonging to the subdifferential of the objective function at this point. In several cases, the solution set of a variational inequality problem is shown to coincide with the solution set of a convex program with its dual gap function as objective function, while the mapping involved can be used to express the above normal vectors.

Suggested Citation

  • Z. L. Wu & S. Y. Wu, 2006. "Characterizations of the Solution Sets of Convex Programs and Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 341-360, August.
  • Handle: RePEc:spr:joptap:v:130:y:2006:i:2:d:10.1007_s10957-006-9108-6
    DOI: 10.1007/s10957-006-9108-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-006-9108-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-006-9108-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. X. M. Yang, 2009. "On Characterizing the Solution Sets of Pseudoinvex Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 537-542, March.
    2. Satoshi Suzuki, 2019. "Optimality Conditions and Constraint Qualifications for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 963-976, December.
    3. V. Jeyakumar & G. M. Lee & G. Li, 2015. "Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 407-435, February.
    4. Vsevolod I. Ivanov, 2013. "Optimality Conditions and Characterizations of the Solution Sets in Generalized Convex Problems and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 65-84, July.
    5. Satoshi Suzuki & Daishi Kuroiwa, 2015. "Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 62(3), pages 431-441, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:130:y:2006:i:2:d:10.1007_s10957-006-9108-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.