Author
Abstract
A linear pursuit problem in the plane under incomplete pursuer information about the evader is investigated. At discrete time instants, the pursuer measures with errors the angle of vision to the evader, the angular velocity of the line of sight, and the relative distance. Other combinations of measurable parameters are possible (for example, angle of vision and relative distance or angle of vision only). The measurements errors obey certain geometric constraints. The initial uncertainties on the evader coordinates and velocities are given in advance. Having a resource of impulse control, the pursuer tries to minimize the miss distance. The evader control is bounded in modulus. The problem is formulated as an auxiliary differential game. Here, the notion of informational set is central. The informational set is the totality of pointwise phase states consistent with the history of the observation-control process. The informational set depends on the current measurements; it changes in time and plays the role of a generalized state, which is used for constructing the pursuer control. A control method designed for the linear pursuit problem is used in the planar problem of a vehicle homing toward a dangerous space object. The nonlinear dynamics is described by the Kepler equations. Nonlinear terms of the equations in relative coordinates are small and are replaced by an uncertain vector parameter, which is bounded in modulus and is regarded as an evader control. As a result, we obtain the mentioned control problem in the plane. The final part of the paper is devoted to the simulation of a space vehicle homing toward a dangerous space object. In testing the control method developed, two variants are considered: random measurement errors and game method of constructing the measurements; the latter is also described in the paper.
Suggested Citation
S. I. Kumkov & V. S. Patsko, 2001.
"Informational Sets in a Model Problem of Homing,"
Journal of Optimization Theory and Applications, Springer, vol. 108(3), pages 499-526, March.
Handle:
RePEc:spr:joptap:v:108:y:2001:i:3:d:10.1023_a:1017579207066
DOI: 10.1023/A:1017579207066
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:108:y:2001:i:3:d:10.1023_a:1017579207066. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.