Author
Abstract
An iterative scheme, in which two-point boundary-value problems (TPBVP) are solved as multipoint boundary-value problems (MPBVP), which are independent TPBVPs in each iteration and on each subdomain, is derived for second-order ordinary differential equations. Several equations are solved for illustration. In particular, the algorithm is described in detail for the first boundary-value problem (FBVP) and second boundary-value problem (SBVP). A possible extension to higher-order BVPs is discussed briefly. The procedure may be used when the original TPBVP cannot be solved (does not converge) in a single long domain. It is suitable for implementation on computers with parallel processing. However, that issue is beyond the scope of this paper. The long domain is cut into a large number of subdomains and, based on assumed boundary conditions at the interface points, the resulting local BVPs are solved by any convenient conventional method. The local solutions are then patched by using simple matching formulas, which are derived below, rather than solving large systems of algebraic equations, as it is done in similar existing methods. Assuming that the local solutions are obtained by the most efficient methods, the overall convergence speed depends on the speed of matching. The proposed matching algorithm is based on a fixed-point iteration and has only a linear convergence rate. The rate can be made quadratic by applying standard accelerating schemes, which is beyond the scope of this article.
Suggested Citation
H. Pasic, 1999.
"Multipoint Boundary-Value Solution of Two-Point Boundary-Value Problems,"
Journal of Optimization Theory and Applications, Springer, vol. 100(2), pages 397-416, February.
Handle:
RePEc:spr:joptap:v:100:y:1999:i:2:d:10.1023_a:1021742521630
DOI: 10.1023/A:1021742521630
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:100:y:1999:i:2:d:10.1023_a:1021742521630. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.