Author
Listed:
- Zhiwu Shang
(Tiangong University
Tiangong University)
- Hu Liu
(Tiangong University
Tiangong University)
- Wanxiang Li
(Tiangong University
Tiangong University)
- Zhihua Wu
(Tiangong University
Tiangong University)
- Hongchuan Cheng
(Tiangong University
Tiangong University)
Abstract
Mainstream transfer learning techniques are highly effective in addressing the issue of limited target domain samples in fault diagnosis. However, when there are insufficient samples in the source domain, the transfer results are often poor. Meta-learning is a method that involves training models by constructing meta-tasks and generalizing them to new unseen tasks, offering a solution to the challenge of limited training samples. To address the few-shot problem of poor transfer effect caused by limited source domain samples under variable working conditions, this paper proposes a hard task-based dual-aligned meta-transfer learning (HT-DAMTL) method. Firstly, a dual-aligned meta-transfer framework is proposed, which embeds the designed cross-domain knowledge transfer structure (CDKTS) into the outer loop of meta-learning to achieve external transfer of meta-knowledge. The CDKTS method combines the use of multi-kernel maximum mean discrepancy (MK-MMD) with a domain discriminator to extract features that are invariant across different domains. Secondly, a meta-training method called information entropy-based reorganization hard task (RHT) is introduced to enhance the meta-model’s feature learning on hard samples, leading to improved fault diagnosis accuracy. Finally, HT-DAMTL’s performance is validated on public and private bearing datasets, showing its superiority over other methods.
Suggested Citation
Zhiwu Shang & Hu Liu & Wanxiang Li & Zhihua Wu & Hongchuan Cheng, 2025.
"Hard task-based dual-aligned meta-transfer learning for cross-domain few-shot fault diagnosis,"
Journal of Intelligent Manufacturing, Springer, vol. 36(7), pages 5051-5065, October.
Handle:
RePEc:spr:joinma:v:36:y:2025:i:7:d:10.1007_s10845-024-02489-x
DOI: 10.1007/s10845-024-02489-x
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:7:d:10.1007_s10845-024-02489-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.