IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i7d10.1007_s10845-024-02458-4.html
   My bibliography  Save this article

Random convolution layer: an auxiliary method to improve fault diagnosis performance

Author

Listed:
  • Zhiqian Zhao

    (Harbin Institute of Technology)

  • Runchao Zhao

    (Harbin Institute of Technology)

  • Yinghou Jiao

    (Harbin Institute of Technology)

Abstract

In real industry, it is often difficult to obtain large-scale labeled data. Existing Convolutional Neural Network (CNN)-based fault diagnosis methods often struggle to achieve accurate diagnoses of machine conditions due to the scarcity of labeled data, hindering the ability of models to develop strong inductive biases. We propose a plug-and-play auxiliary method, random convolution layer (RCL), to improve the generalization performance of the fault diagnosis models. This method delves into the fundamental commonalities across diverse tasks and varying network structures, thereby enhancing the diversity of samples to establish a more robust source domain environment. The RCL preserves the dimensional nature of the data in the time domain while randomly altering the kernel sizes during convolution operations, thus generating new data without compromising global information. During the training process, the newly generated data is mixed with the original data and fed into the fault diagnosis model. RCL is incorporated as a module into the inputs of different fault diagnosis models, and its effectiveness is validated on three public datasets as well as a self-built testbed. The results show that the present auxiliary method improves the domain generalization performance of the baselines, and can improve the accuracy of the corresponding fault diagnosis models. Our code is available at https://github.com/zhiqan/Random-convolution-layer .

Suggested Citation

  • Zhiqian Zhao & Runchao Zhao & Yinghou Jiao, 2025. "Random convolution layer: an auxiliary method to improve fault diagnosis performance," Journal of Intelligent Manufacturing, Springer, vol. 36(7), pages 4845-4866, October.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:7:d:10.1007_s10845-024-02458-4
    DOI: 10.1007/s10845-024-02458-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02458-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02458-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:7:d:10.1007_s10845-024-02458-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.