IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i6d10.1007_s10845-024-02447-7.html
   My bibliography  Save this article

Multi-channel anomaly detection using graphical models

Author

Listed:
  • Bernadin Namoano

    (Cranfield University)

  • Christina Latsou

    (Cranfield University)

  • John Ahmet Erkoyuncu

    (Cranfield University)

Abstract

Anomaly detection in multivariate time-series data is critical for monitoring asset conditions, enabling prompt fault detection and diagnosis to mitigate damage, reduce downtime and enhance safety. Existing literature predominately emphasises temporal dependencies in single-channel data, often overlooking interrelations between features in multivariate time-series data and across multiple channels. This paper introduces G-BOCPD, a novel graphical model-based annotation method designed to automatically detect anomalies in multi-channel multivariate time-series data. To address internal and external dependencies, G-BOCPD proposes a hybridisation of the graphical lasso and expectation maximisation algorithms. This approach detects anomalies in multi-channel multivariate time-series by identifying segments with diverse behaviours and patterns, which are then annotated to highlight variations. The method alternates between estimating the concentration matrix, which represents dependencies between variables, using the graphical lasso algorithm, and annotating segments through a minimal path clustering method for a comprehensive understanding of variations. To demonstrate its effectiveness, G-BOCPD is applied to multichannel time-series obtained from: (i) Diesel Multiple Unit train engines exhibiting faulty behaviours; and (ii) a group of train doors at various degradation stages. Empirical evidence highlights G-BOCPD's superior performance compared to previous approaches in terms of precision, recall and F1-score.

Suggested Citation

  • Bernadin Namoano & Christina Latsou & John Ahmet Erkoyuncu, 2025. "Multi-channel anomaly detection using graphical models," Journal of Intelligent Manufacturing, Springer, vol. 36(6), pages 4319-4330, August.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:6:d:10.1007_s10845-024-02447-7
    DOI: 10.1007/s10845-024-02447-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02447-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02447-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:6:d:10.1007_s10845-024-02447-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.