Author
Listed:
- Huangyi Qu
(The Hong Kong University of Science and Technology (Guangzhou))
- Jianhao Chen
(The Hong Kong University of Science and Technology (Guangzhou))
- Yi Cai
(The Hong Kong University of Science and Technology (Guangzhou)
Hong Kong University of Science and Technology)
Abstract
Tungsten Inert Gas (TIG) welding is a manufacturing process that utilizes argon as a shielding gas and tungsten as an electrode to join metals at high temperatures. The weld penetration is the key to determine the quality of the weld. However, the lack of sensing technology makes weld penetration difficult to predict, which imposes a major challenge to process stability and weld quality. To address this challenge, a digital twin-driven method is proposed for characterizing the melt pool morphology and melt penetration prediction. To achieve this, an analytical model of the melt pool with time-varying welding speed under the action of a double ellipsoidal circular heat source is first derived. The analytical model is solved using the numerical integration method. The prediction of melt depth and melt width is achieved by extracting isotherms. Meanwhile, a digital reconstruction of the welding scene was achieved by implementing the Neural Radiance Fields (NeRF) method. The target rendering of the melt pool and welding scene is accomplished by constructing voxels and meshes. Furthermore, VR is utilized as the interface for human–computer interaction, and a digital twin model of the molten pool morphology and welding scene is generated. The prediction model's accuracy is verified through welding experiments using 304L steel on a robotic welding system. The results show that in the 0–4 s stage, the penetration error is controlled within 7%. In the stage of 4–16 s when the speed changes, the maximum error of penetration is 16.59%. In terms of welding scene reconstruction quality, PSNR is 33.98 and SSIM reaches 0.9032. The method allows real-life simulation of different welding conditions and parameter combinations prior to welding, assessing their impact on the welding results, in order to find the optimal configuration of process parameters. It can also be remotely realized to monitor and control the melt penetration in real-time during the welding process. This method provides a new solution and a theoretical guidance system to solve the welding penetration control problems and it plays an important role in promoting welding intelligence.
Suggested Citation
Huangyi Qu & Jianhao Chen & Yi Cai, 2025.
"A digital twin approach for weld penetration prediction of tig welding with dual ellipsoid heat source,"
Journal of Intelligent Manufacturing, Springer, vol. 36(6), pages 4083-4103, August.
Handle:
RePEc:spr:joinma:v:36:y:2025:i:6:d:10.1007_s10845-024-02431-1
DOI: 10.1007/s10845-024-02431-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:6:d:10.1007_s10845-024-02431-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.