IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i5d10.1007_s10845-024-02409-z.html
   My bibliography  Save this article

A novel method based on deep learning algorithms for material deformation rate detection

Author

Listed:
  • Selim Özdem

    (Hitit University)

  • İlhami Muharrem Orak

    (Karabük University)

Abstract

Given the significant influence of microstructural characteristics on a material’s mechanical, physical, and chemical properties, this study posits that the deformation rate of structural steel S235-JR can be precisely determined by analyzing changes in its microstructure. Utilizing advanced artificial intelligence techniques, microstructure images of S235-JR were systematically analyzed to establish a correlation with the material’s lifespan. The steel was categorized into five classes and subjected to varying deformation rates through laboratory tensile tests. Post-deformation, the specimens underwent metallographic procedures to obtain microstructure images via an light optical microscope (LOM). A dataset comprising 10000 images was introduced and validated using K-Fold cross-validation. This research utilized deep learning (DL) architectures ResNet50, ResNet101, ResNet152, VGG16, and VGG19 through transfer learning to train and classify images containing deformation information. The effectiveness of these models was meticulously compared using a suite of metrics including Accuracy, F1-score, Recall, and Precision to determine their classification success. The classification accuracy was compared across the test data, with ResNet50 achieving the highest accuracy of 98.45%. This study contributes a five-class dataset of labeled images to the literature, offering a new resource for future research in material science and engineering.

Suggested Citation

  • Selim Özdem & İlhami Muharrem Orak, 2025. "A novel method based on deep learning algorithms for material deformation rate detection," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3249-3270, June.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02409-z
    DOI: 10.1007/s10845-024-02409-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02409-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02409-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02409-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.