A real spatial–temporal attention denoising network for nugget quality detection in resistance spot weld
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-023-02160-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Baifan Zhou & Tim Pychynski & Markus Reischl & Evgeny Kharlamov & Ralf Mikut, 2022. "Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1139-1163, April.
- Meng Xiao & Bo Yang & Shilong Wang & Yongsheng Chang & Song Li & Gang Yi, 2023. "Research on recognition methods of spot-welding surface appearances based on transfer learning and a lightweight high-precision convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2153-2170, June.
- Sudip Halder & Sunil Bhat & Daria Zychma & Pawel Sowa, 2022. "Broken Rotor Bar Fault Diagnosis Techniques Based on Motor Current Signature Analysis for Induction Motor—A Review," Energies, MDPI, vol. 15(22), pages 1-20, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Siddique Akbar & Toomas Vaimann & Bilal Asad & Ants Kallaste & Muhammad Usman Sardar & Karolina Kudelina, 2023. "State-of-the-Art Techniques for Fault Diagnosis in Electrical Machines: Advancements and Future Directions," Energies, MDPI, vol. 16(17), pages 1-44, September.
- Zhen Zhang & Zenan Yang & Chenchong Wang & Wei Xu, 2024. "Accelerating ultrashort pulse laser micromachining process comprehensive optimization using a machine learning cycle design strategy integrated with a physical model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 449-465, January.
- Paweł Fic & Adam Czornik & Piotr Rosikowski, 2023. "Anomaly Detection for Hydraulic Power Units—A Case Study," Future Internet, MDPI, vol. 15(6), pages 1-29, June.
- Kaibo Lu & Zhen Li & Andrew Longstaff, 2025. "In-process surface quality monitoring of the slender workpiece machining with digital twin approach," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2039-2053, March.
- Sergey Butsykin & Anton Gordynets & Alexey Kiselev & Mikhail Slobodyan, 2023. "Evaluation of the reliability of resistance spot welding control via on-line monitoring of dynamic resistance," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3109-3129, October.
- Reza Bazghandi & Mohammad Hoseintabar Marzebali & Vahid Abolghasemi & Shahin Hedayati Kia, 2023. "A Novel Mode Un-Mixing Approach in Variational Mode Decomposition for Fault Detection in Wound Rotor Induction Machines," Energies, MDPI, vol. 16(14), pages 1-17, July.
- Chao Huang & Siqi Bu & Hiu Hung Lee & Kwong Wah Chan & Winco K. C. Yung, 2024. "Prognostics and health management for induction machines: a comprehensive review," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 937-962, March.
- Muhammad Usman Sardar & Toomas Vaimann & Lauri Kütt & Ants Kallaste & Bilal Asad & Siddique Akbar & Karolina Kudelina, 2023. "Inverter-Fed Motor Drive System: A Systematic Analysis of Condition Monitoring and Practical Diagnostic Techniques," Energies, MDPI, vol. 16(15), pages 1-41, July.
- Sarahi Aguayo-Tapia & Gerardo Avalos-Almazan & Jose de Jesus Rangel-Magdaleno & Juan Manuel Ramirez-Cortes, 2023. "Physical Variable Measurement Techniques for Fault Detection in Electric Motors," Energies, MDPI, vol. 16(12), pages 1-21, June.
More about this item
Keywords
Resistance spot welding; Welded nugget quality; Deep learning; Attention mechanism; Vibration excitation response signal analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02160-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.