IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i4d10.1007_s10845-019-01487-8.html
   My bibliography  Save this article

Intelligent pulse analysis of high-speed electrical discharge machining using different RNNs

Author

Listed:
  • Xuexin Zhang

    (China University of Petroleum (East China))

  • Yonghong Liu

    (China University of Petroleum (East China))

  • Xinlei Wu

    (China University of Petroleum (East China))

  • Zhenwei Niu

    (China University of Petroleum (East China))

Abstract

High-speed electrical discharge machining (EDM) is a nontraditional machining method using high electric energy to efficiently remove materials. In this paper, a novel pulse classification method was proposed based on the recurrent neural network (RNN) for high-speed EDM pulse analysis. This study is the first time that an RNN has been applied in high-speed EDM pulse analysis. Different from traditional EDM, discharge pulses of high-speed EDM were classified into five types during the machining process: open, spark, arc, partially short and short. Models based on three different RNNs including the traditional RNN, LSTM (long short-term memory) and IndRNN (independently recurrent neural network) with different activation functions were built to analyze the discharge pulses in the research. A new input data structure based on the minimum signal change period was proposed in the classification method to simplify the model structure and improve accuracy at the same time. Without setting thresholds, the highest classification accuracy of the proposed model is up to 97.85%, which can simultaneously classify discharge pulses based on 10,000 orders of magnitude including various current values. The proposed method was effectively adapted to the complicated machining conditions and the compound power source of the high-speed EDM. The optimal model was used to analyze the distribution of discharge pulses during the machining process under different currents, fluxes and feeding speeds. The proportion of the discharge pulses was clearly predicted. Through analyzing the discharge pulses of long machining time, the regulation of discharge under different machining parameters was revealed more reliably, providing valuable information for the improvement of high-speed EDM servo systems.

Suggested Citation

  • Xuexin Zhang & Yonghong Liu & Xinlei Wu & Zhenwei Niu, 2020. "Intelligent pulse analysis of high-speed electrical discharge machining using different RNNs," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 937-951, April.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01487-8
    DOI: 10.1007/s10845-019-01487-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01487-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01487-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01487-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.