IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v16y2025i2d10.1007_s13132-024-02198-z.html
   My bibliography  Save this article

A Long-Term and Global Energy Security Performance Evaluation Model Integrating Principle Component Analysis, Assurance Region Approach, and the Malmquist Technology

Author

Listed:
  • Tai-Hsi Wu

    (National Taipei University)

  • Chi Yu

    (Johnson Controls-Hitachi Air Conditioning Taiwan Co., Ltd)

Abstract

A comprehensive literature review on energy security performance (ESP) highlighted a major gap in long-term, systematic global ESP studies. While some studies have assessed ESP changes in various countries over 20 years to identify progress or decline, their methods may not accurately reflect long-term ESP trends. Furthermore, the Malmquist productivity index (MPI), commonly used for calculating intertemporal performances and efficiencies, lacks flexibility in adjusting weights for inputs and outputs in assessments. Addressing this gap, this study proposes PCA/MPI-AR, an integrated approach merging principal component analysis (PCA), the assurance region (AR) technique, and MPI, to analyze ESP trends in 125 countries from 1997 to 2017. The results showed MPI-AR scores ranging from 0.3543 to 4.2800, indicating a general trend of ESP improvement over 21 years, with significant recent progress compared to earlier periods. Notably, 107 countries scored at least 1.0, and 3 scored below 0.5. A grouping analysis classified 12 countries as “highly efficient and improving,” with Switzerland, Ireland, Denmark, and Luxembourg as benchmarks. For the countries labeled “inefficient and regressing,” understanding and potentially emulating the strategies of these benchmarks is essential. Adopting this integrated PCA/MPI-AR approach incorporates flexible weighting capabilities and marks a significant advancement in the field of ESP evaluation. It is anticipated that our model will not only align more closely with the real-world conditions under which energy policies are formulated and implemented but also provide a more precise tool for evaluating and comparing the efficiency of different countries in enhancing their ESP. The research also suggests three potential policy directions for improvement in underperforming countries: renewable energy investment, energy efficiency enhancement, and energy taxation policy, as well as enhancing international cooperation through sharing best practices and technologies. This approach allows countries with significant improvements to support those with declining ESP scores, promoting a unified approach to global energy security. Urgent reforms and targeted interventions are needed to address specific deficiencies, potentially drawing on strategies from more successful nations.

Suggested Citation

  • Tai-Hsi Wu & Chi Yu, 2025. "A Long-Term and Global Energy Security Performance Evaluation Model Integrating Principle Component Analysis, Assurance Region Approach, and the Malmquist Technology," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(2), pages 7580-7611, June.
  • Handle: RePEc:spr:jknowl:v:16:y:2025:i:2:d:10.1007_s13132-024-02198-z
    DOI: 10.1007/s13132-024-02198-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-024-02198-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-024-02198-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K. & Mukherjee, Ishani & Drupady, Ira Martina & D’Agostino, Anthony L., 2011. "Evaluating energy security performance from 1990 to 2010 for eighteen countries," Energy, Elsevier, vol. 36(10), pages 5846-5853.
    2. Lai, Po‐Lin & Potter, Andrew & Beynon, Malcolm & Beresford, Anthony, 2015. "Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique," Transport Policy, Elsevier, vol. 42(C), pages 75-85.
    3. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    4. Abdelrahman Azzuni & Christian Breyer, 2018. "Definitions and dimensions of energy security: a literature review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(1), January.
    5. Michela Nardo & Michaela Saisana & Andrea Saltelli & Stefano Tarantola & Anders Hoffman & Enrico Giovannini, 2005. "Handbook on Constructing Composite Indicators: Methodology and User Guide," OECD Statistics Working Papers 2005/3, OECD Publishing.
    6. Lai-Wang Wang & Ke-Duc Le & Thi-Duong Nguyen, 2019. "Assessment of the Energy Efficiency Improvement of Twenty-Five Countries: A DEA Approach," Energies, MDPI, vol. 12(8), pages 1-14, April.
    7. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    8. Tortosa-Ausina, Emili & Grifell-Tatje, Emili & Armero, Carmen & Conesa, David, 2008. "Sensitivity analysis of efficiency and Malmquist productivity indices: An application to Spanish savings banks," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1062-1084, February.
    9. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    10. Huaping Sun & Muhammad Ikram & Muhammad Mohsin & Qaiser Abbas, 2021. "Energy Security And Environmental Efficiency: Evidence From Oecd Countries," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 66(02), pages 489-506, March.
    11. Russell G. Thompson & F. D. Singleton & Robert M. Thrall & Barton A. Smith, 1986. "Comparative Site Evaluations for Locating a High-Energy Physics Lab in Texas," Interfaces, INFORMS, vol. 16(6), pages 35-49, December.
    12. Yu, Ming-Miin & Nguyen, Minh-Anh Thi, 2023. "Productivity changes of Asia-Pacific airlines: A Malmquist productivity index approach for a two-stage dynamic system," Omega, Elsevier, vol. 115(C).
    13. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    14. Kuljanin, Jovana & Kalić, Milica & Caggiani, Leonardo & Ottomanelli, Michele, 2019. "A comparative efficiency and productivity analysis: Implication to airlines located in Central and South-East Europe," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 152-163.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    2. Kang, Duan, 2024. "The establishment of evaluation systems and an index for energy superpower," Applied Energy, Elsevier, vol. 356(C).
    3. Wu, Tai-Hsi & Huang, Shi-Wei & Lin, Mei-Chen & Wang, Hsin-Hua, 2023. "Energy security performance evaluation revisited: From the perspective of the energy supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Erahman, Qodri Febrilian & Purwanto, Widodo Wahyu & Sudibandriyo, Mahmud & Hidayatno, Akhmad, 2016. "An assessment of Indonesia's energy security index and comparison with seventy countries," Energy, Elsevier, vol. 111(C), pages 364-376.
    5. Huang, Shi-Wei & Chung, Yung-Fu & Wu, Tai-Hsi, 2021. "Analyzing the relationship between energy security performance and decoupling of economic growth from CO2 emissions for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Patrick Gasser & Marco Cinelli & Anna Labijak & Matteo Spada & Peter Burgherr & Miłosz Kadziński & Božidar Stojadinović, 2020. "Quantifying Electricity Supply Resilience of Countries with Robust Efficiency Analysis," Energies, MDPI, vol. 13(7), pages 1-35, March.
    7. Saleh Shadman & Marlia Mohd Hanafiah & Christina May May Chin & Eng Hwa Yap & Novita Sakundarini, 2021. "Conceptualising the Sustainable Energy Security Dimensions of Malaysia: A Thematic Analysis through Stakeholder Engagement to Draw Policy Implications," Sustainability, MDPI, vol. 13(21), pages 1-26, October.
    8. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    9. Coutinho, Gabriel Leuzinger & Vianna, João Nildo & Dias, Maria Amélia, 2020. "Alternatives for improving energy security in Cape Verde," Utilities Policy, Elsevier, vol. 67(C).
    10. Getao Hu & Jun Yang & Jun Li, 2022. "The Dynamic Evolution of Global Energy Security and Geopolitical Games: 1995~2019," IJERPH, MDPI, vol. 19(21), pages 1-25, November.
    11. Walter Leal Filho & Abdul-Lateef Balogun & Dinesh Surroop & Amanda Lange Salvia & Kapil Narula & Chunlan Li & Julian David Hunt & Andrea Gatto & Ayyoob Sharifi & Haibo Feng & Stella Tsani & Hossein Az, 2022. "Realising the Potential of Renewable Energy as a Tool for Energy Security in Small Island Developing States," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    12. Zhang, Mingming & Zhou, Simei & Wang, Qunwei & Liu, Liyun & Zhou, Dequn, 2023. "Will the carbon neutrality target impact China's energy security? A dynamic Bayesian network model," Energy Economics, Elsevier, vol. 125(C).
    13. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    14. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    15. Wabukala, Benard M. & Bergland, Olvar & Otim, Jacob & Elasu, Joseph & Muwanga, Robert & Adaramola, Muyiwa S., 2025. "Keeping the lights on: Assessing energy dynamics and electricity security in Uganda," Energy, Elsevier, vol. 330(C).
    16. Linda Hancock & Linda Wollersheim, 2021. "EU Carbon Diplomacy: Assessing Hydrogen Security and Policy Impact in Australia and Germany," Energies, MDPI, vol. 14(23), pages 1-27, December.
    17. Gunnarsdottir, I. & Davidsdottir, B. & Worrell, E. & Sigurgeirsdottir, S., 2022. "Indicators for sustainable energy development: An Icelandic case study," Energy Policy, Elsevier, vol. 164(C).
    18. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    19. Fahad Bin Abdullah & Rizwan Iqbal & Falak Shad Memon & Sadique Ahmad & Mohammed A. El-Affendi, 2023. "Advancing Sustainability in the Power Distribution Industry: An Integrated Framework Analysis," Sustainability, MDPI, vol. 15(10), pages 1-28, May.
    20. Jaraitė, Jūratė & Di Maria, Corrado, 2012. "Efficiency, productivity and environmental policy: A case study of power generation in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1557-1568.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:16:y:2025:i:2:d:10.1007_s13132-024-02198-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.