IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v92y2025i2d10.1007_s10898-024-01455-4.html
   My bibliography  Save this article

Quasiconjugate duality and optimality conditions for quasiconvex optimization

Author

Listed:
  • Satoshi Suzuki

    (Shimane University)

Abstract

In nonlinear optimization, conjugate functions and subdifferentials play an essential role. In particular, Fenchel conjugate is the most well known conjugate function in convex optimization. In quasiconvex optimization, extra parameters for quasiconjugate functions have been introduced in order to show duality theorems, for example $$\lambda $$ λ -quasiconjugate and $$\lambda $$ λ -semiconjugate. By these extra parameters, we can show duality results that hold for general quasiconvex objective functions. On the other hand, extra parameters usually increase the complexity of dual problems. Hence, conjugate functions without extra parameters have also been investigated, for example H-quasiconjugate, R-quasiconjugate, and so on. However, there are some open problems. In this paper, we study quasiconjugate duality and optimality conditions for quasiconvex optimization without extra parameters. We investigate three types of quasiconjugate dual problems, and show sufficient conditions for strong duality. We introduce three types of quasi-subdifferentials, and study optimality conditions and characterizations of the solution set. Additionally, we give a classification of quasiconvex optimization problems in terms of quasiconjugate duality.

Suggested Citation

  • Satoshi Suzuki, 2025. "Quasiconjugate duality and optimality conditions for quasiconvex optimization," Journal of Global Optimization, Springer, vol. 92(2), pages 279-293, June.
  • Handle: RePEc:spr:jglopt:v:92:y:2025:i:2:d:10.1007_s10898-024-01455-4
    DOI: 10.1007/s10898-024-01455-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01455-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01455-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Satoshi Suzuki, 2010. "Set containment characterization with strict and weak quasiconvex inequalities," Journal of Global Optimization, Springer, vol. 47(2), pages 273-285, June.
    2. Satoshi Suzuki & Daishi Kuroiwa, 2015. "Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 62(3), pages 431-441, July.
    3. Satoshi Suzuki & Daishi Kuroiwa, 2009. "Set containment characterization for quasiconvex programming," Computational Optimization and Applications, Springer, vol. 45(4), pages 551-563, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nithirat Sisarat & Rabian Wangkeeree & Gue Myung Lee, 2020. "On Set Containment Characterizations for Sets Described by Set-Valued Maps with Applications," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 824-841, March.
    2. Satoshi Suzuki & Daishi Kuroiwa, 2011. "On Set Containment Characterization and Constraint Qualification for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 554-563, June.
    3. Xiangkai Sun & Kok Lay Teo & Liping Tang, 2019. "Dual Approaches to Characterize Robust Optimal Solution Sets for a Class of Uncertain Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 984-1000, September.
    4. Nader Kanzi & Majid Soleimani-damaneh, 2020. "Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 77(3), pages 627-641, July.
    5. Shashi Kant Mishra & Vivek Laha & Mohd Hassan, 2024. "On Quasiconvex Multiobjective Optimization and Variational Inequalities Using Greenberg–Pierskalla Based Generalized Subdifferentials," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1169-1186, September.
    6. Satoshi Suzuki, 2021. "Karush–Kuhn–Tucker type optimality condition for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 79(1), pages 191-202, January.
    7. Vsevolod I. Ivanov, 2019. "Characterizations of Solution Sets of Differentiable Quasiconvex Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 144-162, April.
    8. Vsevolod I. Ivanov, 2020. "Characterization of Radially Lower Semicontinuous Pseudoconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 368-383, February.
    9. Satoshi Suzuki, 2019. "Optimality Conditions and Constraint Qualifications for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 963-976, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:92:y:2025:i:2:d:10.1007_s10898-024-01455-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.