IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i1d10.1007_s10898-023-01339-z.html
   My bibliography  Save this article

Strict feasibility for the polynomial complementarity problem

Author

Listed:
  • Xue-liu Li

    (Guangxi Minzu University)

  • Guo-ji Tang

    (Guangxi Minzu University)

Abstract

In the present paper, the strict feasibility of the polynomial complementarity problem (PCP) is investigated. To this end, as a generalization of the concept of S-tensor, a concept of S-tensor tuple is introduced. Some properties of S-tensor tuples are investigated. In particular, several conditions are proposed to judge whether a tensor tuple is an S-tensor tuple or not. Then, based on the S-tensor tuple, the strict feasibility of PCP is investigated.

Suggested Citation

  • Xue-liu Li & Guo-ji Tang, 2024. "Strict feasibility for the polynomial complementarity problem," Journal of Global Optimization, Springer, vol. 89(1), pages 57-71, May.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:1:d:10.1007_s10898-023-01339-z
    DOI: 10.1007/s10898-023-01339-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01339-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01339-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu-Bin Cui & Yu-Dong Fan & Yi-Sheng Song & Shi-Liang Wu, 2022. "The Existence and Uniqueness of Solution for Tensor Complementarity Problem and Related Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 321-334, January.
    2. Yisheng Song & Wei Mei, 2018. "Structural Properties of Tensors and Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 289-305, February.
    3. K. Palpandi & Sonali Sharma, 2021. "Tensor Complementarity Problems with Finite Solution Sets," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 951-965, September.
    4. Tong-tong Shang & Jing Yang & Guo-ji Tang, 2022. "Generalized Polynomial Complementarity Problems over a Polyhedral Cone," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 443-483, February.
    5. Ge Li & Jicheng Li, 2023. "Improved Fixed Point Iterative Methods for Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 199(2), pages 787-804, November.
    6. Vu Trung Hieu & Yimin Wei & Jen-Chih Yao, 2020. "Notes on the Optimization Problems Corresponding to Polynomial Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 687-695, February.
    7. Shenglong Hu & Jie Wang & Zheng-Hai Huang, 2018. "Error Bounds for the Solution Sets of Quadratic Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 983-1000, December.
    8. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    9. Xue-Li Bai & Zheng-Hai Huang & Yong Wang, 2016. "Global Uniqueness and Solvability for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 72-84, July.
    10. Vu Trung Hieu, 2019. "On the R0-Tensors and the Solution Map of Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 163-183, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue-liu Li & Guo-ji Tang, 2024. "The Bounds of Solutions to Polynomial Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2560-2591, December.
    2. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    3. Tong-tong Shang & Guo-ji Tang, 2023. "Structured tensor tuples to polynomial complementarity problems," Journal of Global Optimization, Springer, vol. 86(4), pages 867-883, August.
    4. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part I: Basic Theory," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 1-23, October.
    5. Xue-Li Bai & Zheng-Hai Huang & Xia Li, 2019. "Stability of Solutions and Continuity of Solution Maps of Tensor Complementarity Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-19, April.
    6. Shouqiang Du & Weiyang Ding & Yimin Wei, 2021. "Acceptable Solutions and Backward Errors for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 260-276, January.
    7. Meng-Meng Zheng & Zheng-Hai Huang & Xiao-Xiao Ma, 2020. "Nonemptiness and Compactness of Solution Sets to Generalized Polynomial Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 80-98, April.
    8. Tong-tong Shang & Guo-ji Tang, 2023. "Mixed polynomial variational inequalities," Journal of Global Optimization, Springer, vol. 86(4), pages 953-988, August.
    9. Tong-tong Shang & Jing Yang & Guo-ji Tang, 2022. "Generalized Polynomial Complementarity Problems over a Polyhedral Cone," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 443-483, February.
    10. Jian-Xun Liu & Zhao-Feng Lan & Zheng-Hai Huang, 2025. "Existence and Uniqueness of Solutions of Generalized Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 205(1), pages 1-21, April.
    11. Vu Trung Hieu, 2020. "Solution maps of polynomial variational inequalities," Journal of Global Optimization, Springer, vol. 77(4), pages 807-824, August.
    12. Vu Trung Hieu, 2019. "On the R0-Tensors and the Solution Map of Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 163-183, April.
    13. Shouqiang Du & Maolin Che & Yimin Wei, 2020. "Stochastic structured tensors to stochastic complementarity problems," Computational Optimization and Applications, Springer, vol. 75(3), pages 649-668, April.
    14. Yisheng Song & Xudong Li, 2022. "Copositivity for a Class of Fourth-Order Symmetric Tensors Given by Scalar Dark Matter," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 334-346, October.
    15. Lu-Bin Cui & Yu-Dong Fan & Yi-Sheng Song & Shi-Liang Wu, 2022. "The Existence and Uniqueness of Solution for Tensor Complementarity Problem and Related Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 321-334, January.
    16. Wei Mei & Qingzhi Yang, 2020. "Properties of Structured Tensors and Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 99-114, April.
    17. Jie Wang & Shenglong Hu & Zheng-Hai Huang, 2018. "Solution Sets of Quadratic Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 120-136, January.
    18. Shenglong Hu & Jie Wang & Zheng-Hai Huang, 2018. "Error Bounds for the Solution Sets of Quadratic Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 983-1000, December.
    19. Hai-Ying Wang & Zu-Feng Fu & Shi-Liang Wu, 2025. "On the Bound of the Solution Set for the Vertical Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-21, January.
    20. Yan, Weijie & Ling, Chen & Ling, Liyun & He, Hongjin, 2019. "Generalized tensor equations with leading structured tensors," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 311-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:1:d:10.1007_s10898-023-01339-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.