IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v87y2023i2d10.1007_s10898-022-01205-4.html
   My bibliography  Save this article

A mini-batch stochastic conjugate gradient algorithm with variance reduction

Author

Listed:
  • Caixia Kou

    (Beijing University of Posts and Telecommunications)

  • Han Yang

    (Beijing University of Posts and Telecommunications)

Abstract

Stochastic gradient descent method is popular for large scale optimization but has slow convergence asymptotically due to the inherent variance. To remedy this problem, there have been many explicit variance reduction methods for stochastic descent, such as SVRG Johnson and Zhang [Advances in neural information processing systems, (2013), pp. 315–323], SAG Roux et al. [Advances in neural information processing systems, (2012), pp. 2663–2671], SAGA Defazio et al. [Advances in neural information processing systems, (2014), pp. 1646–1654] and so on. Conjugate gradient method, which has the same computation cost with gradient descent method, is considered. In this paper, in the spirit of SAGA, we propose a stochastic conjugate gradient algorithm which we call SCGA. With the Fletcher and Reeves type choices, we prove a linear convergence rate for smooth and strongly convex functions. We experimentally demonstrate that SCGA converges faster than the popular SGD type algorithms for four machine learning models, which may be convex, nonconvex or nonsmooth. Solving regression problems, SCGA is competitive with CGVR, which is the only one stochastic conjugate gradient algorithm with variance reduction so far, as we know.

Suggested Citation

  • Caixia Kou & Han Yang, 2023. "A mini-batch stochastic conjugate gradient algorithm with variance reduction," Journal of Global Optimization, Springer, vol. 87(2), pages 1009-1025, November.
  • Handle: RePEc:spr:jglopt:v:87:y:2023:i:2:d:10.1007_s10898-022-01205-4
    DOI: 10.1007/s10898-022-01205-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01205-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01205-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:87:y:2023:i:2:d:10.1007_s10898-022-01205-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.