IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v69y2017i4d10.1007_s10898-017-0548-3.html
   My bibliography  Save this article

Implementation of Cartesian grids to accelerate Delaunay-based derivative-free optimization

Author

Listed:
  • Pooriya Beyhaghi

    (University of California, San Diego)

  • Thomas Bewley

    (University of California, San Diego)

Abstract

This paper introduces a modification of our original Delaunay-based optimization algorithm (developed in JOGO DOI: 10.1007/s10898-015-0384-2 ) that reduces the number of function evaluations on the boundary of feasibility as compared with the original algorithm. A weaknesses we have identified with the original algorithm is the sometimes faulty behavior of the generated uncertainty function near the boundary of feasibility, which leads to more function evaluations along the boundary of feasibility than might otherwise be necessary. To address this issue, a second search function is introduced which has improved behavior near the boundary of the search domain. Additionally, the datapoints are quantized onto a Cartesian grid, which is successively refined, over the search domain. These two modifications lead to a significant reduction of datapoints accumulating on the boundary of feasibility, and faster overall convergence.

Suggested Citation

  • Pooriya Beyhaghi & Thomas Bewley, 2017. "Implementation of Cartesian grids to accelerate Delaunay-based derivative-free optimization," Journal of Global Optimization, Springer, vol. 69(4), pages 927-949, December.
  • Handle: RePEc:spr:jglopt:v:69:y:2017:i:4:d:10.1007_s10898-017-0548-3
    DOI: 10.1007/s10898-017-0548-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0548-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0548-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pooriya Beyhaghi & Daniele Cavaglieri & Thomas Bewley, 2016. "Delaunay-based derivative-free optimization via global surrogates, part I: linear constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 331-382, November.
    2. Paul Belitz & Thomas Bewley, 2013. "New horizons in sphere-packing theory, part II: lattice-based derivative-free optimization via global surrogates," Journal of Global Optimization, Springer, vol. 56(1), pages 61-91, May.
    3. Pooriya Beyhaghi & Thomas R. Bewley, 2016. "Delaunay-based derivative-free optimization via global surrogates, part II: convex constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 383-415, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryan Alimo & Daniele Cavaglieri & Pooriya Beyhaghi & Thomas R. Bewley, 2021. "Design of IMEXRK time integration schemes via Delaunay-based derivative-free optimization with nonconvex constraints and grid-based acceleration," Journal of Global Optimization, Springer, vol. 79(3), pages 567-591, March.
    2. Pooriya Beyhaghi & Ryan Alimo & Thomas Bewley, 2020. "A derivative-free optimization algorithm for the efficient minimization of functions obtained via statistical averaging," Computational Optimization and Applications, Springer, vol. 76(1), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan Alimo & Daniele Cavaglieri & Pooriya Beyhaghi & Thomas R. Bewley, 2021. "Design of IMEXRK time integration schemes via Delaunay-based derivative-free optimization with nonconvex constraints and grid-based acceleration," Journal of Global Optimization, Springer, vol. 79(3), pages 567-591, March.
    2. Ryan Alimo & Pooriya Beyhaghi & Thomas R. Bewley, 2020. "Delaunay-based derivative-free optimization via global surrogates. Part III: nonconvex constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 743-776, August.
    3. Pooriya Beyhaghi & Thomas R. Bewley, 2016. "Delaunay-based derivative-free optimization via global surrogates, part II: convex constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 383-415, November.
    4. Giulio Galvan & Marco Sciandrone & Stefano Lucidi, 2021. "A parameter-free unconstrained reformulation for nonsmooth problems with convex constraints," Computational Optimization and Applications, Springer, vol. 80(1), pages 33-53, September.
    5. Pooriya Beyhaghi & Daniele Cavaglieri & Thomas Bewley, 2016. "Delaunay-based derivative-free optimization via global surrogates, part I: linear constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 331-382, November.
    6. Pooriya Beyhaghi & Ryan Alimo & Thomas Bewley, 2020. "A derivative-free optimization algorithm for the efficient minimization of functions obtained via statistical averaging," Computational Optimization and Applications, Springer, vol. 76(1), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:69:y:2017:i:4:d:10.1007_s10898-017-0548-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.