IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v64y2016i3p563-575.html
   My bibliography  Save this article

Eigenvalue analysis of constrained minimization problem for homogeneous polynomial

Author

Listed:
  • Yisheng Song
  • Liqun Qi

Abstract

In this paper, the concepts of Pareto H-eigenvalue and Pareto Z-eigenvalue are introduced for studying constrained minimization problem and the necessary and sufficient conditions of such eigenvalues are given. It is proved that a symmetric tensor has at least one Pareto H-eigenvalue (Pareto Z-eigenvalue). Furthermore, the minimum Pareto H-eigenvalue (or Pareto Z-eigenvalue) of a symmetric tensor is exactly equal to the minimum value of constrained minimization problem of homogeneous polynomial deduced by such a tensor, which gives an alternative methods for solving the minimum value of constrained minimization problem. In particular, a symmetric tensor $${\mathcal {A}}$$ A is strictly copositive if and only if every Pareto H-eigenvalue (Z-eigenvalue) of $${\mathcal {A}}$$ A is positive, and $${\mathcal {A}}$$ A is copositive if and only if every Pareto H-eigenvalue (Z-eigenvalue) of $${\mathcal {A}}$$ A is non-negative. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Yisheng Song & Liqun Qi, 2016. "Eigenvalue analysis of constrained minimization problem for homogeneous polynomial," Journal of Global Optimization, Springer, vol. 64(3), pages 563-575, March.
  • Handle: RePEc:spr:jglopt:v:64:y:2016:i:3:p:563-575
    DOI: 10.1007/s10898-015-0343-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-015-0343-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-015-0343-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yisheng Song & Liqun Qi, 2015. "Properties of Some Classes of Structured Tensors," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 854-873, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruixue Zhao & Jinyan Fan, 2020. "Higher-degree tensor eigenvalue complementarity problems," Computational Optimization and Applications, Springer, vol. 75(3), pages 799-816, April.
    2. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part I: Basic Theory," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 1-23, October.
    3. Tong-tong Shang & Guo-ji Tang, 2023. "Structured tensor tuples to polynomial complementarity problems," Journal of Global Optimization, Springer, vol. 86(4), pages 867-883, August.
    4. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2017. "Copositivity Detection of Tensors: Theory and Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 746-761, September.
    5. Yisheng Song & Xudong Li, 2022. "Copositivity for a Class of Fourth-Order Symmetric Tensors Given by Scalar Dark Matter," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 334-346, October.
    6. Yisheng Song & Gaohang Yu, 2016. "Properties of Solution Set of Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 85-96, July.
    7. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2018. "Copositive tensor detection and its applications in physics and hypergraphs," Computational Optimization and Applications, Springer, vol. 69(1), pages 133-158, January.
    8. Yisheng Song & Wei Mei, 2018. "Structural Properties of Tensors and Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 289-305, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    2. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    3. Vu Trung Hieu, 2020. "Solution maps of polynomial variational inequalities," Journal of Global Optimization, Springer, vol. 77(4), pages 807-824, August.
    4. Xue-Li Bai & Zheng-Hai Huang & Yong Wang, 2016. "Global Uniqueness and Solvability for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 72-84, July.
    5. Yan, Weijie & Ling, Chen & Ling, Liyun & He, Hongjin, 2019. "Generalized tensor equations with leading structured tensors," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 311-324.
    6. Shouqiang Du & Weiyang Ding & Yimin Wei, 2021. "Acceptable Solutions and Backward Errors for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 260-276, January.
    7. Yong Wang & Zheng-Hai Huang & Liqun Qi, 2018. "Global Uniqueness and Solvability of Tensor Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 137-152, April.
    8. Vu Trung Hieu, 2019. "On the R0-Tensors and the Solution Map of Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 163-183, April.
    9. Xuezhong Wang & Maolin Che & Yimin Wei, 2022. "Randomized Kaczmarz methods for tensor complementarity problems," Computational Optimization and Applications, Springer, vol. 82(3), pages 595-615, July.
    10. Ya-nan Zheng & Wei Wu, 2018. "On a Class of Semi-Positive Tensors in Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 127-136, April.
    11. Shouqiang Du & Maolin Che & Yimin Wei, 2020. "Stochastic structured tensors to stochastic complementarity problems," Computational Optimization and Applications, Springer, vol. 75(3), pages 649-668, April.
    12. Chen, Haibin & Li, Guoyin & Qi, Liqun, 2016. "Further results on Cauchy tensors and Hankel tensors," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 50-62.
    13. Yisheng Song & Xudong Li, 2022. "Copositivity for a Class of Fourth-Order Symmetric Tensors Given by Scalar Dark Matter," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 334-346, October.
    14. Shouqiang Du & Liyuan Cui & Yuanyuan Chen & Yimin Wei, 2022. "Stochastic Tensor Complementarity Problem with Discrete Distribution," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 912-929, March.
    15. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part I: Basic Theory," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 1-23, October.
    16. Tong-tong Shang & Guo-ji Tang, 2023. "Structured tensor tuples to polynomial complementarity problems," Journal of Global Optimization, Springer, vol. 86(4), pages 867-883, August.
    17. Maolin Che & Liqun Qi & Yimin Wei, 2016. "Positive-Definite Tensors to Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 475-487, February.
    18. Tong-tong Shang & Guo-ji Tang, 2023. "Mixed polynomial variational inequalities," Journal of Global Optimization, Springer, vol. 86(4), pages 953-988, August.
    19. Meng-Meng Zheng & Zheng-Hai Huang & Xiao-Xiao Ma, 2020. "Nonemptiness and Compactness of Solution Sets to Generalized Polynomial Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 80-98, April.
    20. Shui-Lian Xie & Dong-Hui Li & Hong-Ru Xu, 2017. "An Iterative Method for Finding the Least Solution to the Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 119-136, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:64:y:2016:i:3:p:563-575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.