IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v63y2015i1p61-76.html
   My bibliography  Save this article

A homotopy method based on penalty function for nonlinear semidefinite programming

Author

Listed:
  • Li Yang
  • Bo Yu
  • YanXi Li

Abstract

This paper proposes a homotopy method based on a penalty function for solving nonlinear semidefinite programming problems. The penalty function is the composite function of an exponential penalty function, the eigenvalue function and a nonlinear operator mapping. Representations of its first and second order derivatives are given. Using the penalty function, a new homotopy is constructed. Global convergence of a smooth curve determined by the homotopy is proven under mild conditions. In the process of numerically tracing the curve, the method requires just the solution of a linear system of dimension $$n+2$$ n + 2 , whereas a homotopy method proposed by Yang and Yu (Comput Optim Appl 56(1):81–96, 2013 ) requires a system of dimension $$n+m(m+1)/2+1$$ n + m ( m + 1 ) / 2 + 1 to be solved, where $$n$$ n is the number of variables while $$m$$ m is the order of constraint matrix. So, it is expected that the proposed method can improve the efficiency of the method proposed by Yang and Yu. Preliminary numerical experiments are presented and show that the considered algorithm is efficient for some nonlinear semidefinite programming problems. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Li Yang & Bo Yu & YanXi Li, 2015. "A homotopy method based on penalty function for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 63(1), pages 61-76, September.
  • Handle: RePEc:spr:jglopt:v:63:y:2015:i:1:p:61-76
    DOI: 10.1007/s10898-015-0276-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-015-0276-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-015-0276-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Luo & H. Wu & G. Chen, 2012. "On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 54(3), pages 599-618, November.
    2. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.
    3. Hui-juan Xiong & Bo Yu, 2010. "An aggregate deformation homotopy method for min-max-min problems with max-min constraints," Computational Optimization and Applications, Springer, vol. 47(3), pages 501-527, November.
    4. Li Yang & Bo Yu, 2013. "A homotopy method for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(1), pages 81-96, September.
    5. Xin Chen & Houduo Qi & Liqun Qi & Kok-Lay Teo, 2004. "Smooth Convex Approximation to the Maximum Eigenvalue Function," Journal of Global Optimization, Springer, vol. 30(2), pages 253-270, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    2. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 745-762, March.
    3. Yuya Yamakawa & Takayuki Okuno, 2022. "A stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programs," Computational Optimization and Applications, Springer, vol. 83(3), pages 1027-1064, December.
    4. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    5. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    6. H. Wu & H. Luo & J. Yang, 2014. "Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 59(4), pages 695-727, August.
    7. Yan-Chao Liang & Gui-Hua Lin, 2012. "Stationarity Conditions and Their Reformulations for Mathematical Programs with Vertical Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 54-70, July.
    8. Yong-Jin Liu & Jing Yu, 2023. "A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem," Computational Optimization and Applications, Springer, vol. 85(2), pages 547-582, June.
    9. Xiaojiao Tong & Liqun Qi & Soon-Yi Wu & Felix Wu, 2012. "A smoothing SQP method for nonlinear programs with stability constraints arising from power systems," Computational Optimization and Applications, Springer, vol. 51(1), pages 175-197, January.
    10. Yuya Yamakawa & Hiroyuki Sato, 2022. "Sequential optimality conditions for nonlinear optimization on Riemannian manifolds and a globally convergent augmented Lagrangian method," Computational Optimization and Applications, Springer, vol. 81(2), pages 397-421, March.
    11. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:63:y:2015:i:1:p:61-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.