IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

The analysis of expected fitness and success ratio of two heuristic optimizations on two bimodal MaxSAT problems

Listed author(s):
  • Xinsheng Lai


  • Yuren Zhou


Registered author(s):

    Heuristic algorithms, especially hill-climbing algorithms, are prone to being trapped by local optimization. Many researchers have focused on analyzing convergence and runtime of some heuristic algorithms on SAT-solving problems. However, there is rare work on analyzing success ratio (the ratio of the number of runs that find the global maxima of optimization versus the total runs) and expected fitness at each generation. Expected fitness at each generation could lead us to better understand the expected fitness of a heuristic algorithm could find on the problem to be solve at a certain generation. Success ratio help us understand with what a probability a heuristic algorithm could find the global optimization of the problem to be solved. So, this paper analyzed expected fitness and success ratio of two hill-climbing algorithms on two bimodal MaxSAT problems by using Markov chain. The theoretical and experimental results showed that though hill-climbing algorithms (both hill-climbing RandomWalk and Local (1+1)EA) converged faster, they could not always find global maxima of bimodal SAT-solving problems. The success ratios of hill-climbing algorithms usually have their own limits. The limit of success ratio is dependent on the SAT-solving problem itself and the expected distribution of initial bit string, and independent on whether hill-climbing RandomWalk or Local (1+1)EA is used. Copyright Springer Science+Business Media, LLC. 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Journal of Global Optimization.

    Volume (Year): 54 (2012)
    Issue (Month): 4 (December)
    Pages: 745-764

    in new window

    Handle: RePEc:spr:jglopt:v:54:y:2012:i:4:p:745-764
    DOI: 10.1007/s10898-011-9790-2
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:54:y:2012:i:4:p:745-764. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.