IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

New parameterized kernel functions for linear optimization

Listed author(s):
  • Yanqin Bai


  • Wei Xie
  • Jing Zhang
Registered author(s):

    Recent studies on the kernel function-based primal-dual interior-point algorithms indicate that a kernel function not only represents a measure of the distance between the iteration and the central path, but also plays a critical role in improving the computational complexity of an interior-point algorithm. In this paper, we propose a new class of parameterized kernel functions for the development of primal-dual interior-point algorithms for solving linear programming problems. The properties of the proposed kernel functions and corresponding parameters are investigated. The results lead to a complexity bounds of $${O\left(\sqrt{n}\,{\rm log}\,n\,{\rm log}\,\frac{n}{\epsilon}\right)}$$ for the large-update primal-dual interior point methods. To the best of our knowledge, this is the best known bound achieved. Copyright Springer Science+Business Media, LLC. 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Journal of Global Optimization.

    Volume (Year): 54 (2012)
    Issue (Month): 2 (October)
    Pages: 353-366

    in new window

    Handle: RePEc:spr:jglopt:v:54:y:2012:i:2:p:353-366
    DOI: 10.1007/s10898-012-9934-z
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:54:y:2012:i:2:p:353-366. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.