IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

An approach to constrained global optimization based on exact penalty functions

Listed author(s):
  • G. Di Pillo


  • S. Lucidi


  • F. Rinaldi


Registered author(s):

    In the field of global optimization many efforts have been devoted to solve unconstrained global optimization problems. The aim of this paper is to show that unconstrained global optimization methods can be used also for solving constrained optimization problems, by resorting to an exact penalty approach. In particular, we make use of a non-differentiable exact penalty function $${P_q(x;\varepsilon)}$$ . We show that, under weak assumptions, there exists a threshold value $${\bar \varepsilon >0 }$$ of the penalty parameter $${\varepsilon}$$ such that, for any $${\varepsilon \in (0, \bar \varepsilon]}$$ , any global minimizer of P q is a global solution of the related constrained problem and conversely. On these bases, we describe an algorithm that, by combining an unconstrained global minimization technique for minimizing P q for given values of the penalty parameter $${\varepsilon}$$ and an automatic updating of $${\varepsilon}$$ that occurs only a finite number of times, produces a sequence {x k } such that any limit point of the sequence is a global solution of the related constrained problem. In the algorithm any efficient unconstrained global minimization technique can be used. In particular, we adopt an improved version of the DIRECT algorithm. Some numerical experimentation confirms the effectiveness of the approach. Copyright Springer Science+Business Media, LLC. 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Journal of Global Optimization.

    Volume (Year): 54 (2012)
    Issue (Month): 2 (October)
    Pages: 251-260

    in new window

    Handle: RePEc:spr:jglopt:v:54:y:2012:i:2:p:251-260
    DOI: 10.1007/s10898-010-9582-0
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:54:y:2012:i:2:p:251-260. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.