IDEAS home Printed from
   My bibliography  Save this article

Strong convergence theorems for variational inequality, equilibrium and fixed point problems with applications


  • Shenghua Wang


  • Giuseppe Marino


  • Yeong-Cheng Liou



In this paper, we introduce a new iterative scheme for finding a common element of the set of common solutions of a finite family of equilibrium problems with relaxed monotone mappings, of the set of common solutions of a finite family of variational inequalities and of the set of common fixed points of an infinite family of nonexpansive mappings in a Hilbert space. Strong convergence for the proposed iterative scheme is proved. As an application, we solve a multi-objective optimization problem using the result of this paper. Our results improve and extend the corresponding ones announced by others. Copyright Springer Science+Business Media, LLC. 2012

Suggested Citation

  • Shenghua Wang & Giuseppe Marino & Yeong-Cheng Liou, 2012. "Strong convergence theorems for variational inequality, equilibrium and fixed point problems with applications," Journal of Global Optimization, Springer, vol. 54(1), pages 155-171, September.
  • Handle: RePEc:spr:jglopt:v:54:y:2012:i:1:p:155-171
    DOI: 10.1007/s10898-011-9754-6

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:54:y:2012:i:1:p:155-171. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.