IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Automatic differentiation for the optimization of a ship propulsion and steering system: a proof of concept

Listed author(s):
  • Ralf Leidenberger


  • Karsten Urban


Registered author(s):

    We describe the optimization of the Voith-Schneider-Propeller (VSP) which is an industrial propulsion and steering system of a ship combined in one module. The goal is to optimize efficiency of the VSP with respect to different design variables. In order to determine the efficiency, we have to use numerical simulations for the complex flow around the VSP. Such computations are performed with standard (partly commercial) flow solvers. For the numerical optimization, one would like to use gradient-based methods which requires derivatives of the flow variables with respect to the design parameters. In this paper, we investigate if Automatic Differentiation (AD) offers a method to compute the required derivatives in the described framework. As a proof of concept, we realize AD for the 2D-code Caffa and the 3D-code Comet, for the simplified model of optimizing efficiency with respect to the angle of attack of one single blade (like an airfoil). We show that AD gives smooth derivatives, whereas finite differences show oscillations. This regularization effect is even more pronounced in the 3D-case. Numerical optimization by AD and Newton’s method shows almost optimal convergence rates. Copyright Springer Science+Business Media, LLC. 2011

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Journal of Global Optimization.

    Volume (Year): 49 (2011)
    Issue (Month): 3 (March)
    Pages: 497-504

    in new window

    Handle: RePEc:spr:jglopt:v:49:y:2011:i:3:p:497-504
    DOI: 10.1007/s10898-010-9609-6
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:49:y:2011:i:3:p:497-504. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.