IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/vyid10.1007_s10878-020-00609-w.html
   My bibliography  Save this article

Integer linear programming formulations of the filter partitioning minimization problem

Author

Listed:
  • Hazhar Rahmani

    (University of South Carolina)

  • Jason M. O’Kane

    (University of South Carolina)

Abstract

Combinatorial filters, which take the form of labelled transition graphs, are a general representation for filtering and inference tasks in robotics. They are of particular interest in contexts where the objective is to minimize the computational resources needed to execute the filter. One specific problem is called the filter minimization (FM) problem, in which the goal is to find, for a given original filter, a state-minimal filter equivalent to the original filter. We consider a special case of FM, called the filter partitioning minimization (FPM) problem, in which the reduced filter must partition the state space of the original filter. This problem has been proven to be NP-hard. This paper considers the practical problem of solving FPM in spite of these hardness results. In contrast to the best known algorithm for this problem, a heuristic approach based on graph coloring proposed by O’Kane and Shell, we show how to convert an FPM instance to an instance of the well-known integer linear programming (ILP) problem. We present three distinct formulations of this reduction. Though ILP is itself a challenging problem, reducing FPM to ILP has the advantage that the ILP problem has been studied in great detail, and highly-optimized solvers are readily available. We describe experiments comparing this approach to the heuristic algorithm of O’Kane and Shell. The results show that the proposed ILP technique performs better in computing exact solutions as the filter sizes grow, and that the ILP approach obtains higher-quality feasible solutions, in contexts where time limitations prohibit the computation of exact solutions.

Suggested Citation

  • Hazhar Rahmani & Jason M. O’Kane, 0. "Integer linear programming formulations of the filter partitioning minimization problem," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
  • Handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-020-00609-w
    DOI: 10.1007/s10878-020-00609-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00609-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00609-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-020-00609-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.