IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/vyid10.1007_s10878-020-00553-9.html
   My bibliography  Save this article

Analysis of consensus sorting via the cycle metric

Author

Listed:
  • Ivan Avramovic

    (George Mason University)

  • Dana S. Richards

    (George Mason University)

Abstract

Sorting is studied in this paper as an archetypal example to explore the optimizing power of consensus. In conceptualizing the consensus sort, the classical hill-climbing method of optimization is paired with the modern notion that value and fitness can be judged by data mining. Consensus sorting is a randomized sorting algorithm which is based on randomly selecting pairs of elements within an unsorted list (expressed in this paper as a permutation), and deciding whether to swap them based on appeals to a database of other permutations. The permutations in the database are all scored via some adaptive sorting metric, and the decision to swap depends on whether the database consensus suggests a better score as a result of swapping. This uninformed search process does not require the definition of the concept of sorting, but rather depends on selecting a metric which does a good job of distinguishing a good path to the goal, a sorted list. A previous paper has shown that the ability of the algorithm to converge on the goal depends strongly on the metric which is used, and analyzed the performance of the algorithm when number of inversions was used as a metric. This paper continues by analyzing the performance of a much more efficient metric, the number of cycles in the permutation.

Suggested Citation

  • Ivan Avramovic & Dana S. Richards, 0. "Analysis of consensus sorting via the cycle metric," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-17.
  • Handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-020-00553-9
    DOI: 10.1007/s10878-020-00553-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00553-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00553-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-020-00553-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.