Author
Abstract
In this paper, we discuss several reformulations and solution approaches for the problem of minimizing a polynomial in binary variables (P). We review and integrate different literature streams to describe a methodology consisting of three distinct phases, together with several possible variants for each phase. The first phase determines a recursive decomposition of each monomial of interest into pairs of submonomials, down to the initial variables. The decomposition gives rise to a so-called quadratization scheme. The second phase builds a quadratic reformulation of (P) from a given quadratization scheme, by associating a new auxiliary variable with each submonomial that appears in the scheme. A quadratic reformulation of (P) is obtained by enforcing relations between the auxiliary variables and the monomials that they represent, either through linear constraints or through penalty terms in the objective function. The resulting quadratic problem (QP) is non-convex in general and is still difficult to solve. At this stage we introduce the third phase of the resolution process, which consists in convexifying (QP). We consider different types of convexification methods, including complete linearization or quadratic convex reformulations. Mathematical properties of the different phases are formally established and some relations between them are clarified. Finally, we present some experimental results which illustrate the discussion and which support the practical relevance of quadratic reformulation methods.
Suggested Citation
Yves Crama & Sourour Elloumi & Amélie Lambert & Elisabeth Rodríguez-Heck, 2025.
"Quadratization and convexification in polynomial binary optimization,"
Journal of Combinatorial Optimization, Springer, vol. 50(3), pages 1-47, October.
Handle:
RePEc:spr:jcomop:v:50:y:2025:i:3:d:10.1007_s10878-025-01334-y
DOI: 10.1007/s10878-025-01334-y
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:50:y:2025:i:3:d:10.1007_s10878-025-01334-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.