Author
Abstract
The proliferation of Internet of Things (IoT) devices has intensified the need for intelligent, adaptive, and energy-efficient resource management across mobile edge–fog–cloud infrastructures. Conventional optimization approaches often fail to manage the dynamic interplay among fluctuating workloads, energy constraints, and real-time scheduling. To address this, a Hybrid Quantum-Enhanced Reinforcement Learning (HQERL) framework is introduced, unifying quantum-inspired heuristics, swarm intelligence, and reinforcement learning into a co-adaptive sched uling system. HQERL employs a feedback-driven architecture to synchronize exploration, optimization, and policy refinement for enhanced task scheduling and resource control. The Maximum Likelihood Swarm Whale Optimization (MLSWO) module encodes dynamic task and system states using swarm intelligence guided by statistical likelihood, generating information-rich inputs for the learning controller. To prevent premature convergence and expand the scheduling search space, the Quantum Brainstorm Optimization (QBO) component incorporates probabilistic memory and collective learning to diversify scheduling solutions. These enhanced representations and exploratory strategies feed into the Proximal Policy Optimization (PPO) controller, which dynamically adapts resource allocation policies in real time based on system feedback, ensuring resilience to workload shifts. Furthermore, Dynamic Voltage Scaling (DVS) is integrated to improve energy efficiency by adjusting processor voltages and frequencies according to workload demands. This seamless coordination enables HQERL to balance task latency, resource use, and power consumption. Evaluation on the LSApp dataset reveals HQERL yields a 15% energy efficiency gain, 12% makespan reduction, and a 23.3% boost in peak system utility, validating its effectiveness for sustainable IoT resource management.
Suggested Citation
S. Sureka Nithila Princy & Paulraj Ranjith kumar, 2025.
"Hybrid quantum-enhanced reinforcement learning for energy-efficient resource allocation in fog-edge computing,"
Journal of Combinatorial Optimization, Springer, vol. 50(1), pages 1-36, August.
Handle:
RePEc:spr:jcomop:v:50:y:2025:i:1:d:10.1007_s10878-025-01336-w
DOI: 10.1007/s10878-025-01336-w
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:50:y:2025:i:1:d:10.1007_s10878-025-01336-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.