IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v50y2025i1d10.1007_s10878-025-01297-0.html
   My bibliography  Save this article

Hardness and algorithms for several new optimization problems on the weighted massively parallel computation model

Author

Listed:
  • Hengzhao Ma

    (Northeastern University
    Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences)

  • Jianzhong Li

    (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences)

Abstract

The topology-aware Massively Parallel Computation (MPC) model is proposed and studied recently, which enhances the classical MPC model by the awareness of network topology. The work of Hu et. al. on topology-aware MPC model considers only the tree topology. In this paper a more general case is considered, where the underlying network is a weighted complete graph. We then call this model as Weighted Massively Parallel Computation (WMPC) model, and study the problem of minimizing communication cost under it. Three communication cost minimization problems are defined based on different patterns of communication, which are the Data Redistribution Problem, Data Allocation Problem on Continuous data, and Data Allocation Problem on Categorized data. We also define four kinds of objective functions for communication cost, which consider the total cost, bottleneck cost, maximum of send and receive cost, and summation of send and receive cost, respectively. Combining the three problems in different communication patterns with the four kinds of objective cost functions, 12 problems are obtained. The hardness results and algorithms of the 12 problems make up the content of this paper. With rigorous proof, we prove that some of the 12 problems are in P, some FPT, some NP-complete, and some W[1]-complete. Approximate algorithms are proposed for several selected problems.

Suggested Citation

  • Hengzhao Ma & Jianzhong Li, 2025. "Hardness and algorithms for several new optimization problems on the weighted massively parallel computation model," Journal of Combinatorial Optimization, Springer, vol. 50(1), pages 1-40, August.
  • Handle: RePEc:spr:jcomop:v:50:y:2025:i:1:d:10.1007_s10878-025-01297-0
    DOI: 10.1007/s10878-025-01297-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-025-01297-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-025-01297-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    2. Benjamin Yakir, 1996. "The Differencing Algorithm LDM for Partitioning: A Proof of a Conjecture of Karmarkar and Karp," Mathematics of Operations Research, INFORMS, vol. 21(1), pages 85-99, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunpeng Sun & Ruoya Jia & Asif Razzaq & Qun Bao, 2023. "RETRACTED ARTICLE: Drivers of China’s geographical renewable energy development: evidence from spatial association network structure approaches," Economic Change and Restructuring, Springer, vol. 56(6), pages 4115-4163, December.
    2. Herrán, Alberto & Manuel Colmenar, J. & Duarte, Abraham, 2021. "An efficient variable neighborhood search for the Space-Free Multi-Row Facility Layout problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 893-907.
    3. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    4. Alfonsas Misevičius & Aleksandras Andrejevas & Armantas Ostreika & Dovilė Verenė & Gintarė Žekienė, 2024. "An Improved Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem," Mathematics, MDPI, vol. 12(23), pages 1-25, November.
    5. Michela Ricciardi Celsi & Lorenzo Ricciardi Celsi, 2024. "Quantum Computing as a Game Changer on the Path towards a Net-Zero Economy: A Review of the Main Challenges in the Energy Domain," Energies, MDPI, vol. 17(5), pages 1-22, February.
    6. Krešimir Mihić & Kevin Ryan & Alan Wood, 2018. "Randomized Decomposition Solver with the Quadratic Assignment Problem as a Case Study," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 295-308, May.
    7. Alistair Wilson & Mariagiovanna Baccara & Ayse Imrohoroglu & Leeat Yariv, 2009. "A Field Study on Matching with Network Externalities," Working Paper 486, Department of Economics, University of Pittsburgh, revised Sep 2011.
    8. Jia, Zhao-hong & Li, Kai & Leung, Joseph Y.-T., 2015. "Effective heuristic for makespan minimization in parallel batch machines with non-identical capacities," International Journal of Production Economics, Elsevier, vol. 169(C), pages 1-10.
    9. Pessoa, Artur Alves & Hahn, Peter M. & Guignard, Monique & Zhu, Yi-Rong, 2010. "Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique," European Journal of Operational Research, Elsevier, vol. 206(1), pages 54-63, October.
    10. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    11. Huizhen Zhang & Cesar Beltran-Royo & Liang Ma, 2013. "Solving the quadratic assignment problem by means of general purpose mixed integer linear programming solvers," Annals of Operations Research, Springer, vol. 207(1), pages 261-278, August.
    12. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    13. Stefan Helber & Daniel Böhme & Farid Oucherif & Svenja Lagershausen & Steffen Kasper, 2016. "A hierarchical facility layout planning approach for large and complex hospitals," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 5-29, June.
    14. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    15. Yong Xia & Wajeb Gharibi, 2015. "On improving convex quadratic programming relaxation for the quadratic assignment problem," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 647-667, October.
    16. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank, 2020. "Decorous combinatorial lower bounds for row layout problems," European Journal of Operational Research, Elsevier, vol. 286(3), pages 929-944.
    17. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.
    18. Mariagiovanna Baccara & Ayse Imrohoroglu & Alistair J. Wilson & Leeat Yariv, 2012. "A Field Study on Matching with Network Externalities," American Economic Review, American Economic Association, vol. 102(5), pages 1773-1804, August.
    19. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.
    20. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:50:y:2025:i:1:d:10.1007_s10878-025-01297-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.