IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v39y2020i3d10.1007_s10878-019-00511-0.html
   My bibliography  Save this article

Compact quadratizations for pseudo-Boolean functions

Author

Listed:
  • Endre Boros

    (Rutgers University)

  • Yves Crama

    (University of Liège)

  • Elisabeth Rodríguez-Heck

    (RWTH Aachen University)

Abstract

The problem of minimizing a pseudo-Boolean function, that is, a real-valued function of 0–1 variables, arises in many applications. A quadratization is a reformulation of this nonlinear problem into a quadratic one, obtained by introducing a set of auxiliary binary variables. A desirable property for a quadratization is to introduce a small number of auxiliary variables. We present upper and lower bounds on the number of auxiliary variables required to define a quadratization for several classes of specially structured functions, such as functions with many zeros, symmetric, exact k-out-of-n, at least k-out-of-n and parity functions, and monomials with a positive coefficient, also called positive monomials. Most of these bounds are logarithmic in the number of original variables, and we prove that they are best possible for several of the classes under consideration. For positive monomials and for some other symmetric functions, a logarithmic bound represents a significant improvement with respect to the best bounds previously published, which are linear in the number of original variables. Moreover, the case of positive monomials is particularly interesting: indeed, when a pseudo-Boolean function is represented by its unique multilinear polynomial expression, a quadratization can be obtained by separately quadratizing its monomials.

Suggested Citation

  • Endre Boros & Yves Crama & Elisabeth Rodríguez-Heck, 2020. "Compact quadratizations for pseudo-Boolean functions," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 687-707, April.
  • Handle: RePEc:spr:jcomop:v:39:y:2020:i:3:d:10.1007_s10878-019-00511-0
    DOI: 10.1007/s10878-019-00511-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-019-00511-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-019-00511-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Hansen & Brigitte Jaumard & Vincent Mathon, 1993. "State-of-the-Art Survey—Constrained Nonlinear 0–1 Programming," INFORMS Journal on Computing, INFORMS, vol. 5(2), pages 97-119, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.
    2. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:39:y:2020:i:3:d:10.1007_s10878-019-00511-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.