IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v39y2020i2d10.1007_s10878-019-00477-z.html
   My bibliography  Save this article

A new approximate cluster deletion algorithm for diamond-free graphs

Author

Listed:
  • Sabrine Malek

    (University of Sfax)

  • Wady Naanaa

    (University of Tunis El Manar)

Abstract

The cluster deletion problem (CD) asks for transforming a given graph into a disjoint union of cliques by removing as few edges as possible. CD is among the most studied combinatorial optimization problem and, for general graphs, it is NP-hard. In the present paper, we identify a new polynomially solvable CD subproblem. We specifically propose a two-phase polynomial-time algorithm that optimally solves CD on the class of (butterfly,diamond)-free graphs. For this latter class of graphs, our two-phase algorithm provides optimal solutions even for another clustering variant, namely, cluster editing. Then, we propose a 2-optimal CD algorithm dedicated to the super-class of diamond-free graphs. For this class, we also show that CD, when parameterised by the number of deleted edges, admits a quadratic-size kernel. Finally, we report the results of experiments carried out on numerous diamond-free graphs, showing the effectiveness of the proposed approximate algorithm in terms of solution quality.

Suggested Citation

  • Sabrine Malek & Wady Naanaa, 2020. "A new approximate cluster deletion algorithm for diamond-free graphs," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 385-411, February.
  • Handle: RePEc:spr:jcomop:v:39:y:2020:i:2:d:10.1007_s10878-019-00477-z
    DOI: 10.1007/s10878-019-00477-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-019-00477-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-019-00477-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:39:y:2020:i:2:d:10.1007_s10878-019-00477-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.