IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v38y2019i4d10.1007_s10878-019-00444-8.html
   My bibliography  Save this article

Approximation of Steiner forest via the bidirected cut relaxation

Author

Listed:
  • Ali Çivril

Abstract

The classical algorithm of Agrawal et al. (SIAM J Comput 24(3):440–456, 1995), stated in the setting of the primal-dual schema by Goemans and Williamson (SIAM J Comput 24(2):296–317, 1995) uses the undirected cut relaxation for the Steiner forest problem. Its approximation ratio is $$2-\frac{1}{k}$$ 2 - 1 k , where k is the number of terminal pairs. A variant of this algorithm more recently proposed by Könemann et al. (SIAM J Comput 37(5):1319–1341, 2008) is based on the lifted cut relaxation. In this paper, we continue this line of work and consider the bidirected cut relaxation for the Steiner forest problem, which lends itself to a novel algorithmic idea yielding the same approximation ratio as the classical algorithm. In doing so, we introduce an extension of the primal-dual schema in which we run two different phases to satisfy connectivity requirements in both directions. This reveals more about the combinatorial structure of the problem. In particular, there are examples on which the classical algorithm fails to give a good approximation, but the new algorithm finds a near-optimal solution.

Suggested Citation

  • Ali Çivril, 2019. "Approximation of Steiner forest via the bidirected cut relaxation," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1196-1212, November.
  • Handle: RePEc:spr:jcomop:v:38:y:2019:i:4:d:10.1007_s10878-019-00444-8
    DOI: 10.1007/s10878-019-00444-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-019-00444-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-019-00444-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:38:y:2019:i:4:d:10.1007_s10878-019-00444-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.