IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v28y2014i1d10.1007_s10878-013-9667-z.html
   My bibliography  Save this article

Staying safe and visible via message sharing in online social networks

Author

Listed:
  • Yilin Shen

    (University of Florida)

  • Thang N. Dinh

    (University of Florida)

  • My T. Thai

    (University of Florida
    Ton Duc Thang University)

  • Hien T. Nguyen

    (Ton Duc Thang University)

Abstract

As an imperative channel for fast information propagation, online social networks (OSNs) also have their defects. One of them is the information leakage, i.e., information could be spread via OSNs to the users whom we are not willing to share with. Thus the problem of constructing a circle of trust to share information with as many friends as possible without further spreading it to unwanted targets has become a challenging research topic but still remained open. Our work is the first attempt to study the Maximum Circle of Trust problem seeking to share the information with the maximum expected number of poster’s friends such that the information spread to the unwanted targets is brought to its knees. First, we consider a special and more practical case with the two-hop information propagation and a single unwanted target. In this case, we show that this problem is NP-hard, which denies the existence of an exact polynomial-time algorithm. We thus propose a Fully Polynomial-Time Approximation Scheme (FPTAS), which can not only adjust any allowable performance error bound but also run in polynomial time with both the input size and allowed error. FPTAS is the best approximation solution one can ever wish for an NP-hard problem. We next consider the number of unwanted targets is bounded and prove that there does not exist an FPTAS in this case. Instead, we design a Polynomial-Time Approximation Scheme (PTAS) in which the allowable error can also be controlled. When the number of unwanted targets are not bounded, we provide a randomized algorithm, along with the analytical theoretical bound and inapproximaibility result. Finally, we consider a general case with many hops information propagation and further show its #P-hardness and propose an effective Iterative Circle of Trust Detection (ICTD) algorithm based on a novel greedy function. An extensive experiment on various real-world OSNs has validated the effectiveness of our proposed approximation and ICTD algorithms. Such an extensive experiment also highlights several important observations on information leakage which help to sharpen the security of OSNs in the future.

Suggested Citation

  • Yilin Shen & Thang N. Dinh & My T. Thai & Hien T. Nguyen, 2014. "Staying safe and visible via message sharing in online social networks," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 186-217, July.
  • Handle: RePEc:spr:jcomop:v:28:y:2014:i:1:d:10.1007_s10878-013-9667-z
    DOI: 10.1007/s10878-013-9667-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-013-9667-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-013-9667-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:28:y:2014:i:1:d:10.1007_s10878-013-9667-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.