IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v18y2009i2d10.1007_s10878-008-9146-0.html
   My bibliography  Save this article

A better constant-factor approximation for weighted dominating set in unit disk graph

Author

Listed:
  • Yaochun Huang

    (University of Texas at Dallas)

  • Xiaofeng Gao

    (University of Texas at Dallas)

  • Zhao Zhang

    (Xinjiang University)

  • Weili Wu

    (University of Texas at Dallas)

Abstract

This paper presents a (10+ε)-approximation algorithm to compute minimum-weight connected dominating set (MWCDS) in unit disk graph. MWCDS is to select a vertex subset with minimum weight for a given unit disk graph, such that each vertex of the graph is contained in this subset or has a neighbor in this subset. Besides, the subgraph induced by this vertex subset is connected. Our algorithm is composed of two phases: the first phase computes a dominating set, which has approximation ratio 6+ε (ε is an arbitrary positive number), while the second phase connects the dominating sets computed in the first phase, which has approximation ratio 4.

Suggested Citation

  • Yaochun Huang & Xiaofeng Gao & Zhao Zhang & Weili Wu, 2009. "A better constant-factor approximation for weighted dominating set in unit disk graph," Journal of Combinatorial Optimization, Springer, vol. 18(2), pages 179-194, August.
  • Handle: RePEc:spr:jcomop:v:18:y:2009:i:2:d:10.1007_s10878-008-9146-0
    DOI: 10.1007/s10878-008-9146-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-008-9146-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-008-9146-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Zhang & Haosheng Fan & Victor C. S. Lee & Minming Li & Yingchao Zhao & Chuang Liu, 2018. "Minimizing the total cost of barrier coverage in a linear domain," Journal of Combinatorial Optimization, Springer, vol. 36(2), pages 434-457, August.
    2. Hongwei Du & Panos Pardalos & Weili Wu & Lidong Wu, 2013. "Maximum lifetime connected coverage with two active-phase sensors," Journal of Global Optimization, Springer, vol. 56(2), pages 559-568, June.
    3. Jiao Zhou & Zhao Zhang & Shaojie Tang & Xiaohui Huang & Ding-Zhu Du, 2018. "Breaking the O (ln n ) Barrier: An Enhanced Approximation Algorithm for Fault-Tolerant Minimum Weight Connected Dominating Set," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 225-235, May.
    4. Feng Zou & Xianyue Li & Suogang Gao & Weili Wu, 2009. "Node-weighted Steiner tree approximation in unit disk graphs," Journal of Combinatorial Optimization, Springer, vol. 18(4), pages 342-349, November.
    5. Zhao Zhang & Wei Liang & Hongmin W. Du & Siwen Liu, 2022. "Constant Approximation for the Lifetime Scheduling Problem of p -Percent Coverage," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2675-2685, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:18:y:2009:i:2:d:10.1007_s10878-008-9146-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.