Author
Abstract
Scientists often collect samples on characteristics of different observation units and wonder whether those characteristics have similar distributional structure. We consider methods to find homogeneous subpopulations in a multidimensional space using regression tree and clustering methods for distributions of a population characteristic. We present a new methodology to estimate a standardized measure of distance between clusters of distributions and for hierarchical testing to find the minimal homogeneous or near-homogeneous tree structure. In addition, we introduce hierarchical clustering with adjacency constraints, which is useful for clustering georeferenced distributions. We conduct simulation studies to compare clustering performance with three measures: Modified Jensen–Shannon divergence (MJS), Earth Mover’s distance and Cramér–von Mises distance to validate the proposed testing procedure for homogeneity. As a motivational example, we introduce georeferenced yellowfin tuna fork length data collected from the catch of purse-seine vessels that operated in the eastern Pacific Ocean. Hierarchical clustering, with and without spatial adjacency constraints, and regression tree methods were applied to the density estimates of length. While the results from the two methods showed some similarities, hierarchical clustering with spatial adjacency produced a more flexible partition structure, without requiring additional covariate information. Clustering with MJS produced more stable results than clustering with the other measures.
Suggested Citation
Mihoko Minami & Cleridy E. Lennert-Cody, 2025.
"Regression Tree and Clustering for Distributions, and Homogeneous Structure of Population Characteristics,"
Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(4), pages 1019-1038, December.
Handle:
RePEc:spr:jagbes:v:30:y:2025:i:4:d:10.1007_s13253-024-00631-z
DOI: 10.1007/s13253-024-00631-z
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:4:d:10.1007_s13253-024-00631-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.