IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v30y2025i3d10.1007_s13253-024-00621-1.html
   My bibliography  Save this article

The Effect of the Prior and the Experimental Design on the Inference of the Precision Matrix in Gaussian Chain Graph Models

Author

Listed:
  • Yunyi Shen

    (University of Wisconsin
    University of Wisconsin)

  • Claudia Solís-Lemus

    (University of Wisconsin)

Abstract

Here, we investigate whether (and how) experimental design could aid in the estimation of the precision matrix in a Gaussian chain graph model, especially the interplay between the design, the effect of the experiment and prior knowledge about the effect. Estimation of the precision matrix is a fundamental task to infer biological graphical structures like microbial networks. We compare the marginal posterior precision of the precision matrix under four priors: flat, conjugate Normal-Wishart, Normal-MGIG and a general independent. Under the flat and conjugate priors, the Laplace-approximated posterior precision is not a function of the design matrix rendering useless any efforts to find an optimal experimental design to infer the precision matrix. In contrast, the Normal-MGIG and general independent priors do allow for the search of optimal experimental designs, yet there is a sharp upper bound on the information that can be extracted from a given experiment. We confirm our theoretical findings via a simulation study comparing (i) the KL divergence between prior and posterior and (ii) the Stein’s loss difference of MAPs between random and no experiment. Our findings provide practical advice for domain scientists conducting experiments to better infer the precision matrix as a representation of a biological network.

Suggested Citation

  • Yunyi Shen & Claudia Solís-Lemus, 2025. "The Effect of the Prior and the Experimental Design on the Inference of the Precision Matrix in Gaussian Chain Graph Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(3), pages 800-869, September.
  • Handle: RePEc:spr:jagbes:v:30:y:2025:i:3:d:10.1007_s13253-024-00621-1
    DOI: 10.1007/s13253-024-00621-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-024-00621-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-024-00621-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Emily L. & Cressie, Noel, 2011. "Bayesian Inference for the Spatial Random Effects Model," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 972-983.
    2. Steffen L. Lauritzen & Thomas S. Richardson, 2002. "Chain graph models and their causal interpretations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 321-348, August.
    3. Lingrui Gan & Naveen N. Narisetty & Feng Liang, 2019. "Bayesian Regularization for Graphical Models With Unequal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1218-1231, July.
    4. Michael J. Daniels, 2002. "Bayesian analysis of covariance matrices and dynamic models for longitudinal data," Biometrika, Biometrika Trust, vol. 89(3), pages 553-566, August.
    5. Marcus J. Claesson & Ian B. Jeffery & Susana Conde & Susan E. Power & Eibhlís M. O’Connor & Siobhán Cusack & Hugh M. B. Harris & Mairead Coakley & Bhuvaneswari Lakshminarayanan & Orla O’Sullivan & Ger, 2012. "Gut microbiota composition correlates with diet and health in the elderly," Nature, Nature, vol. 488(7410), pages 178-184, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    2. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    3. Guanzhou Wei & Venkat Krishnan & Yu Xie & Manajit Sengupta & Yingchen Zhang & Haitao Liao & Xiao Liu, 2024. "A Statistical Model for Multisource Remote-Sensing Data Streams of Wildfire Aerosol Optical Depth," INFORMS Joural on Data Science, INFORMS, vol. 3(2), pages 162-178, October.
    4. Yiran Zhang & Andrew Ying & Steve Edland & Lon White & Ronghui Xu, 2024. "Marginal Structural Illness-Death Models for Semi-competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 668-692, December.
    5. Bo Cai & David B. Dunson, 2006. "Bayesian Covariance Selection in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 62(2), pages 446-457, June.
    6. Wang, Hao, 2010. "Sparse seemingly unrelated regression modelling: Applications in finance and econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2866-2877, November.
    7. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    8. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    9. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    10. Kerstin Thriene & Karin B. Michels, 2023. "Human Gut Microbiota Plasticity throughout the Life Course," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    11. Jean-Paul Fox & Joris Mulder & Sandip Sinharay, 2017. "Bayes Factor Covariance Testing in Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 979-1006, December.
    12. Daniels, Michael J., 2006. "Bayesian modeling of several covariance matrices and some results on propriety of the posterior for linear regression with correlated and/or heterogeneous errors," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1185-1207, May.
    13. Javier Pérez & A. Sánchez, 2011. "Is there a signalling role for public wages? Evidence for the euro area based on macro data," Empirical Economics, Springer, vol. 41(2), pages 421-445, October.
    14. Heckman, James & Pinto, Rodrigo, 2015. "Causal Analysis After Haavelmo," Econometric Theory, Cambridge University Press, vol. 31(1), pages 115-151, February.
    15. Yu Cao & Nitai D. Mukhopadhyay, 2021. "Statistical Modeling of Longitudinal Data with Non-Ignorable Non-Monotone Missingness with Semiparametric Bayesian and Machine Learning Components," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 152-169, May.
    16. Miljkovic, Dragan & Dalbec, Nathan & Zhang, Lei, 2016. "Estimating dynamics of US demand for major fossil fuels," Energy Economics, Elsevier, vol. 55(C), pages 284-291.
    17. Creal, Drew & Kim, Jaeho, 2024. "Bayesian estimation of cluster covariance matrices of unknown form," Journal of Econometrics, Elsevier, vol. 241(1).
    18. Alessio Moneta, 2004. "Identification of Monetary Policy Shocks: A graphical causal approach," Notas Económicas, Faculty of Economics, University of Coimbra, issue 20, pages 39-62, December.
    19. Sung, Bongjung & Lee, Jaeyong, 2023. "Covariance structure estimation with Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    20. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:3:d:10.1007_s13253-024-00621-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.