IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v30y2025i3d10.1007_s13253-024-00604-2.html
   My bibliography  Save this article

An Individual-Based Spatial Epidemiological Model for the Spread of Plant Diseases

Author

Listed:
  • Martina Cendoya

    (Institut Valencià d’Investigacions Agràries)

  • Ana Navarro-Quiles

    (Universitat de València)

  • Antonio López-Quílez

    (Universitat de València)

  • Antonio Vicent

    (Institut Valencià d’Investigacions Agràries)

  • David Conesa

    (Universitat de València)

Abstract

In the study of plant disease epidemics, the state of each individual in the population and their spatial location should be considered when modeling disease spread. We present a model to describe the spread of plant diseases, where the infection of a susceptible individual depends on the transmission rate of infected individuals and the spatial correlation. This latter is introduced through the Matérn correlation function, accounting for spatial dependence based on distance. Almond leaf scorch disease, caused by the bacterium Xylella fastidiosa, was used as a case study to test the behavior of the model parameters and the variability due to the characteristics and location of initial disease introduction using a proposed simulation algorithm. The greatest variability in the results depended on the range parameter of the Matérn correlation, i.e., the distance at which two observations can be considered spatially uncorrelated, and the initial introduction. The spatial distribution of individuals also had a strong influence on disease spread, highlighting that areas without trees acted as barriers when their extent was greater than the range parameter. It should be stressed that this individual-based model can be applied to other plant diseases, adapting the parameter values to their particular epidemiological characteristics.

Suggested Citation

  • Martina Cendoya & Ana Navarro-Quiles & Antonio López-Quílez & Antonio Vicent & David Conesa, 2025. "An Individual-Based Spatial Epidemiological Model for the Spread of Plant Diseases," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(3), pages 618-637, September.
  • Handle: RePEc:spr:jagbes:v:30:y:2025:i:3:d:10.1007_s13253-024-00604-2
    DOI: 10.1007/s13253-024-00604-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-024-00604-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-024-00604-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Peter Guttorp & Tilmann Gneiting, 2006. "Studies in the history of probability and statistics XLIX On the Matern correlation family," Biometrika, Biometrika Trust, vol. 93(4), pages 989-995, December.
    2. Devin Akman & Olcay Akman & Elsa Schaefer, 2018. "Parameter Estimation in Ordinary Differential Equations Modeling via Particle Swarm Optimization," Journal of Applied Mathematics, John Wiley & Sons, vol. 2018(1).
    3. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    4. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    5. Devin Akman & Olcay Akman & Elsa Schaefer, 2018. "Parameter Estimation in Ordinary Differential Equations Modeling via Particle Swarm Optimization," Journal of Applied Mathematics, Hindawi, vol. 2018, pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heinrich, Claudio & Pakkanen, Mikko S. & Veraart, Almut E.D., 2019. "Hybrid simulation scheme for volatility modulated moving average fields," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 224-244.
    2. Unn Dahlén & Johan Lindström & Marko Scholze, 2020. "Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    3. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    4. Thea Roksvåg & Ingelin Steinsland & Kolbjørn Engeland, 2021. "A two‐field geostatistical model combining point and areal observations—A case study of annual runoff predictions in the Voss area," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 934-960, August.
    5. Tarik Faouzi & Emilio Porcu & Igor Kondrashuk & Moreno Bevilacqua, 2024. "Convergence arguments to bridge cauchy and matérn covariance functions," Statistical Papers, Springer, vol. 65(2), pages 645-660, April.
    6. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    8. Joseph Guinness, 2022. "Inverses of Matérn covariances on grids [Spatial modeling with R-INLA: A review]," Biometrika, Biometrika Trust, vol. 109(2), pages 535-541.
    9. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    10. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    11. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    12. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    13. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    14. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    15. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    16. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    17. Ruiman Zhong & Paula Moraga, 2024. "Bayesian Hierarchical Models for the Combination of Spatially Misaligned Data: A Comparison of Melding and Downscaler Approaches Using INLA and SPDE," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 110-129, March.
    18. Vanhatalo, Jarno & Veneranta, Lari & Hudd, Richard, 2012. "Species distribution modeling with Gaussian processes: A case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae," Ecological Modelling, Elsevier, vol. 228(C), pages 49-58.
    19. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    20. Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:3:d:10.1007_s13253-024-00604-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.