IDEAS home Printed from https://ideas.repec.org/a/spr/infotm/v26y2025i3d10.1007_s10799-024-00416-3.html
   My bibliography  Save this article

Economic role of online review filtering systems in the electronic marketplaces

Author

Listed:
  • Huanhuan Cao

    (Zhejiang University of Technology)

  • Dan Wu

    (Zhejiang University of Technology)

  • Yijing Gu

    (Zhejiang University of Technology)

Abstract

The monetary effects of online reviews motivate firms to manipulate such reviews, and electronic marketplaces then adopt online review filtering systems to combat manipulation. We develop an analytical model to explore the role of a filtering system for a monopoly firm, electronic marketplaces and consumer surplus in the monopoly context and then extend it to the symmetrical competition context to explore whether competition changes the role of the filtering system. The results show that the existence of such a filtering system strengthens the possibility of manipulation by the monopoly firm when the intelligence of the filtering system is relatively low. However, in the competitive context, whether the existence of such a filtering system strengthens the possibility of manipulation by both firms relates to the difference between the total consumer base with manipulation under no filtering system and that under the filtering system. We also find that in the monopoly context, the electronic marketplace will adopt the filtering system only when the intelligence of the filtering system is relatively low and the unit misfit cost is moderate. However, in the competitive context, the intelligence of the filtering system is irrelevant to whether the electronic marketplace adopts the filtering system. Finally, the adoption of the filtering system always benefits consumers in both the monopoly and competing contexts.

Suggested Citation

  • Huanhuan Cao & Dan Wu & Yijing Gu, 2025. "Economic role of online review filtering systems in the electronic marketplaces," Information Technology and Management, Springer, vol. 26(3), pages 339-360, September.
  • Handle: RePEc:spr:infotm:v:26:y:2025:i:3:d:10.1007_s10799-024-00416-3
    DOI: 10.1007/s10799-024-00416-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10799-024-00416-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10799-024-00416-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dina Mayzlin & Yaniv Dover & Judith Chevalier, 2014. "Promotional Reviews: An Empirical Investigation of Online Review Manipulation," American Economic Review, American Economic Association, vol. 104(8), pages 2421-2455, August.
    2. Yi Zhao & Sha Yang & Vishal Narayan & Ying Zhao, 2013. "Modeling Consumer Learning from Online Product Reviews," Marketing Science, INFORMS, vol. 32(1), pages 153-169, May.
    3. Young Kwark & Jianqing Chen & Srinivasan Raghunathan, 2014. "Online Product Reviews: Implications for Retailers and Competing Manufacturers," Information Systems Research, INFORMS, vol. 25(1), pages 93-110, March.
    4. D. Harrison McKnight & Vivek Choudhury & Charles Kacmar, 2002. "Developing and Validating Trust Measures for e-Commerce: An Integrative Typology," Information Systems Research, INFORMS, vol. 13(3), pages 334-359, September.
    5. Chrysanthos Dellarocas, 2006. "Strategic Manipulation of Internet Opinion Forums: Implications for Consumers and Firms," Management Science, INFORMS, vol. 52(10), pages 1577-1593, October.
    6. Jianqing Chen & Zhiling Guo & Jian Huang, 2022. "An Economic Analysis of Rebates Conditional on Positive Reviews," Information Systems Research, INFORMS, vol. 33(1), pages 224-243, March.
    7. Monic Sun, 2012. "How Does the Variance of Product Ratings Matter?," Management Science, INFORMS, vol. 58(4), pages 696-707, April.
    8. Rae Yule Kim, 2021. "When does online review matter to consumers? The effect of product quality information cues," Electronic Commerce Research, Springer, vol. 21(4), pages 1011-1030, December.
    9. Kemal Kıvanç Aköz & Cemal Eren Arbatli & Levent Celik, 2020. "Manipulation Through Biased Product Reviews," Journal of Industrial Economics, Wiley Blackwell, vol. 68(4), pages 591-639, December.
    10. Uttara M. Ananthakrishnan & Beibei Li & Michael D. Smith, 2020. "A Tangled Web: Should Online Review Portals Display Fraudulent Reviews?," Information Systems Research, INFORMS, vol. 31(3), pages 950-971, September.
    11. Theodoros Lappas & Gaurav Sabnis & Georgios Valkanas, 2016. "The Impact of Fake Reviews on Online Visibility: A Vulnerability Assessment of the Hotel Industry," Information Systems Research, INFORMS, vol. 27(4), pages 940-961, December.
    12. Yang, Bai & Liu, Ying & Liang, Yan & Tang, Min, 2019. "Exploiting user experience from online customer reviews for product design," International Journal of Information Management, Elsevier, vol. 46(C), pages 173-186.
    13. Lusi Li & Jianqing Chen & Srinivasan Raghunathan, 2018. "Recommender System Rethink: Implications for an Electronic Marketplace with Competing Manufacturers," Information Systems Research, INFORMS, vol. 29(4), pages 1003-1023, December.
    14. Li, Yiming & Li, Gang & Tayi, Giri Kumar & Cheng, T.C.E., 2019. "Omni-channel retailing: Do offline retailers benefit from online reviews?," International Journal of Production Economics, Elsevier, vol. 218(C), pages 43-61.
    15. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    16. Dina Mayzlin, 2006. "Promotional Chat on the Internet," Marketing Science, INFORMS, vol. 25(2), pages 155-163, 03-04.
    17. Wei Chen & Bin Gu & Qiang Ye & Kevin Xiaoguo Zhu, 2019. "Measuring and Managing the Externality of Managerial Responses to Online Customer Reviews," Service Science, INFORMS, vol. 30(1), pages 81-96, March.
    18. Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Qiaozhen & Chen, Ying-Ju & Huang, Wei, 2022. "Dynamic pricing of new experience products with dual-channel social learning and online review manipulations," Omega, Elsevier, vol. 109(C).
    2. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    3. Harrison-Walker, L. Jean & Jiang, Ying, 2023. "Suspicion of online product reviews as fake: Cues and consequences," Journal of Business Research, Elsevier, vol. 160(C).
    4. Jesper Akesson & Robert Hahn & Robert Metcalfe & Manuel Monti-Nussbaum, 2025. "The Impact of Fake Reviews on Demand and Welfare," Framed Field Experiments 00821, The Field Experiments Website.
    5. Liting Li & Haichao Zheng & Dongyu Chen & Bin Zhu, 2024. "Whose reviews are most valuable for predicting the default risk of peer-to-peer lending platforms? Evidence from China," Electronic Commerce Research, Springer, vol. 24(3), pages 1619-1658, September.
    6. Cheng Zhao & Chong Alex Wang, 2023. "A cross-site comparison of online review manipulation using Benford’s law," Electronic Commerce Research, Springer, vol. 23(1), pages 365-406, March.
    7. Yang, Wenjuan & Zhang, Jiantong & Yan, Hong, 2022. "Promotions of online reviews from a channel perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    8. Uttara M. Ananthakrishnan & Beibei Li & Michael D. Smith, 2020. "A Tangled Web: Should Online Review Portals Display Fraudulent Reviews?," Information Systems Research, INFORMS, vol. 31(3), pages 950-971, September.
    9. Hui Zhao & Xiaoyuan Wang & Debing Ni & Kevin W. Li, 2023. "The Quality-Signaling Role of Manipulated Consumer Reviews," Group Decision and Negotiation, Springer, vol. 32(3), pages 503-536, June.
    10. Zhuang, Mengzhou & Cui, Geng & Peng, Ling, 2018. "Manufactured opinions: The effect of manipulating online product reviews," Journal of Business Research, Elsevier, vol. 87(C), pages 24-35.
    11. Travis Dyer & Eunjee Kim, 2021. "Anonymous Equity Research," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 59(2), pages 575-611, May.
    12. Ana Babić Rosario & Kristine Valck & Francesca Sotgiu, 2020. "Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 422-448, May.
    13. Theodoros Lappas & Gaurav Sabnis & Georgios Valkanas, 2016. "The Impact of Fake Reviews on Online Visibility: A Vulnerability Assessment of the Hotel Industry," Information Systems Research, INFORMS, vol. 27(4), pages 940-961, December.
    14. Xitong Li, 2018. "Impact of Average Rating on Social Media Endorsement: The Moderating Role of Rating Dispersion and Discount Threshold," Information Systems Research, INFORMS, vol. 29(3), pages 739-754, September.
    15. Liu, Yong & Gan, Wen-xue & Zhang, Qi, 2021. "Decision-making mechanism of online retailer based on additional online comments of consumers," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    16. Juan Feng & Xin Li & Xiaoquan (Michael) Zhang, 2019. "Online Product Reviews-Triggered Dynamic Pricing: Theory and Evidence," Information Systems Research, INFORMS, vol. 30(4), pages 1107-1123, December.
    17. Mingwen Yang & Zhiqiang (Eric) Zheng & Vijay Mookerjee, 2019. "Prescribing Response Strategies to Manage Customer Opinions: A Stochastic Differential Equation Approach," Information Systems Research, INFORMS, vol. 30(2), pages 351-374, June.
    18. Yabing Jiang & Hong Guo, 2015. "Design of Consumer Review Systems and Product Pricing," Information Systems Research, INFORMS, vol. 26(4), pages 714-730, December.
    19. Zhang, Tao & Li, Gang & Cheng, T.C.E. & Lai, Kin Keung, 2017. "Welfare economics of review information: Implications for the online selling platform owner," International Journal of Production Economics, Elsevier, vol. 184(C), pages 69-79.
    20. Peiyu Chen & Lorin M. Hitt & Yili Hong & Shinyi Wu, 2021. "Measuring Product Type and Purchase Uncertainty with Online Product Ratings: A Theoretical Model and Empirical Application," Information Systems Research, INFORMS, vol. 32(4), pages 1470-1489, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infotm:v:26:y:2025:i:3:d:10.1007_s10799-024-00416-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.