IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v37y2025i3d10.1007_s10696-024-09556-8.html
   My bibliography  Save this article

Integrated planning approach for fleet sizing and fleet management of freight railcars

Author

Listed:
  • Martin Hrušovský

    (WU Vienna University of Economics and Business)

  • Vera Hemmelmayr

    (WU Vienna University of Economics and Business)

  • Georg Schett

    (Fraunhofer Austria Research GmbH)

  • Alexandra Birkmaier

    (Fraunhofer Austria Research GmbH)

  • Sebastian Schlund

    (Fraunhofer Austria Research GmbH)

Abstract

Despite the general support for rail as sustainable and efficient transport mode, its share on modal split remains rather low. One of the reasons for this is the low flexibility and adaptability of rail system to changes in, e.g., demand due to the complex multi-stage planning processes that are partly done manually. In our paper we focus on the fleet planning process for freight railcars and we propose an integrated planning approach consisting of two parts. Firstly, a fleet sizing optimization model is applied to obtain the optimal assignment of railcars to customers’ orders. Within this model, we consider a heterogeneous fleet and take into account substitution between clusters and customers’ preferences. The optimal fleet size is computed on a monthly basis for a planning horizon of multiple years, accounting also for railcar flows between months and years. Secondly, a fleet management model in form of knowledge-based decision support system is applied to help the planner to make changes in the fleet mix by investing into or leasing new railcars, performing revisions and decommissioning of old or unutilized railcars. As also illustrated in the designed real-world case study, the integrated planning approach is able to provide the planner with an overview of possible actions including their direct impact on the fleet mix for a mid-term planning horizon.

Suggested Citation

  • Martin Hrušovský & Vera Hemmelmayr & Georg Schett & Alexandra Birkmaier & Sebastian Schlund, 2025. "Integrated planning approach for fleet sizing and fleet management of freight railcars," Flexible Services and Manufacturing Journal, Springer, vol. 37(3), pages 869-903, September.
  • Handle: RePEc:spr:flsman:v:37:y:2025:i:3:d:10.1007_s10696-024-09556-8
    DOI: 10.1007/s10696-024-09556-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-024-09556-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-024-09556-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dekker, Rommert & Bloemhof, Jacqueline & Mallidis, Ioannis, 2012. "Operations Research for green logistics – An overview of aspects, issues, contributions and challenges," European Journal of Operational Research, Elsevier, vol. 219(3), pages 671-679.
    2. Klosterhalfen, S.T. & Kallrath, J. & Fischer, G., 2014. "Rail car fleet design: Optimization of structure and size," International Journal of Production Economics, Elsevier, vol. 157(C), pages 112-119.
    3. Andreas Bärmann & Frauke Liers, 2018. "Aggregation Methods for Railway Network Design Based on Lifted Benders Cuts," International Series in Operations Research & Management Science, in: Ralf Borndörfer & Torsten Klug & Leonardo Lamorgese & Carlo Mannino & Markus Reuther & Thomas Schlec (ed.), Handbook of Optimization in the Railway Industry, chapter 0, pages 47-72, Springer.
    4. Nielsen, Lars Kjær & Kroon, Leo & Maróti, Gábor, 2012. "A rolling horizon approach for disruption management of railway rolling stock," European Journal of Operational Research, Elsevier, vol. 220(2), pages 496-509.
    5. Raymond K. Cheung & Warren B. Powell, 1996. "An Algorithm for Multistage Dynamic Networks with Random Arc Capacities, with an Application to Dynamic Fleet Management," Operations Research, INFORMS, vol. 44(6), pages 951-963, December.
    6. Anny-del-Mar Agamez-Arias & José Moyano-Fuentes, 2017. "Intermodal transport in freight distribution: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 782-807, November.
    7. Hanif D. Sherali & Lawrence W. Maguire, 2000. "Determining Rail Fleet Sizes for Shipping Automobiles," Interfaces, INFORMS, vol. 30(6), pages 80-90, December.
    8. Fagerholt, Kjetil & Christiansen, Marielle & Magnus Hvattum, Lars & Johnsen, Trond A.V. & Vabø, Thor J., 2010. "A decision support methodology for strategic planning in maritime transportation," Omega, Elsevier, vol. 38(6), pages 465-474, December.
    9. Bojovic, Nebojsa J., 2002. "A general system theory approach to rail freight car fleet sizing," European Journal of Operational Research, Elsevier, vol. 136(1), pages 136-172, January.
    10. Kallrath, J. & Klosterhalfen, S.T. & Walter, M. & Fischer, G. & Blackburn, R., 2017. "Payload-based fleet optimization for rail cars in the chemical industry," European Journal of Operational Research, Elsevier, vol. 259(1), pages 113-129.
    11. Ernest Koenigsberg & Richard C. Lam, 1976. "Cyclic Queue Models of Fleet Operations," Operations Research, INFORMS, vol. 24(3), pages 516-529, June.
    12. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    13. Michael F. Gorman & Dharma Acharya & David Sellers, 2010. "CSX Railway Uses OR to Cash In on Optimized Equipment Distribution," Interfaces, INFORMS, vol. 40(1), pages 5-16, February.
    14. Mark A. Turnquist & William C. Jordan, 1986. "Fleet Sizing under Production Cycles and Uncertain Travel Times," Transportation Science, INFORMS, vol. 20(4), pages 227-236, November.
    15. Ruhollah Heydari & Emanuel Melachrinoudis, 2017. "A path-based capacitated network flow model for empty railcar distribution," Annals of Operations Research, Springer, vol. 253(2), pages 773-798, June.
    16. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    17. T Andersson & P Värbrand, 2007. "Decision support tools for ambulance dispatch and relocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 195-201, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kallrath, J. & Klosterhalfen, S.T. & Walter, M. & Fischer, G. & Blackburn, R., 2017. "Payload-based fleet optimization for rail cars in the chemical industry," European Journal of Operational Research, Elsevier, vol. 259(1), pages 113-129.
    2. Hamid Sayarshad & Nikbakhsh Javadian & Reza Tavakkoli-Moghaddam & Nastaran Forghani, 2010. "Solving multi-objective optimization formulation for fleet planning in a railway industry," Annals of Operations Research, Springer, vol. 181(1), pages 185-197, December.
    3. Felix Papier & Ulrich W. Thonemann, 2008. "Queuing Models for Sizing and Structuring Rental Fleets," Transportation Science, INFORMS, vol. 42(3), pages 302-317, August.
    4. Klosterhalfen, S.T. & Kallrath, J. & Fischer, G., 2014. "Rail car fleet design: Optimization of structure and size," International Journal of Production Economics, Elsevier, vol. 157(C), pages 112-119.
    5. Bojovic, Nebojsa J., 2002. "A general system theory approach to rail freight car fleet sizing," European Journal of Operational Research, Elsevier, vol. 136(1), pages 136-172, January.
    6. Sangpil Ko & Pasi Lautala & Kuilin Zhang, 2020. "Data-Driven Study on the Sustainable Log Movements: Impact of Rail Car Fleet Size on Freight Storage and Car Idling," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    7. Milenković, Miloš S. & Bojović, Nebojša J. & Švadlenka, Libor & Melichar, Vlastimil, 2015. "A stochastic model predictive control to heterogeneous rail freight car fleet sizing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 162-198.
    8. Kochel, Peter & Kunze, Sophie & Nielander, Ulf, 2003. "Optimal control of a distributed service system with moving resources: Application to the fleet sizing and allocation problem," International Journal of Production Economics, Elsevier, vol. 81(1), pages 443-459, January.
    9. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    10. Tan, Zhijia & Du, Liwei & Wang, Ming & Yang, Hai & Wu, Lingxiao, 2024. "Fleet sizing with time and voyage-chartered vessels for an oil shipping company under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    11. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Hassini, Elkafi & Verma, Manish, 2016. "Disruption risk management in railroad networks: An optimization-based methodology and a case studyAuthor-Name: Azad, Nader," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 70-88.
    13. Vanga, Ratnaji & Venkateswaran, Jayendran, 2020. "Fleet sizing of reusable articles under uncertain demand and turnaround times," European Journal of Operational Research, Elsevier, vol. 285(2), pages 566-582.
    14. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).
    15. Tareq Abu-Aisha & Jean-François Audy & Mustapha Ouhimmou, 2024. "Toward an efficient sea-rail intermodal transportation system: a systematic literature review," Journal of Shipping and Trade, Springer, vol. 9(1), pages 1-27, December.
    16. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    17. Amar Kumar Narisetty & Jean-Philippe P. Richard & David Ramcharan & Deby Murphy & Gayle Minks & Jim Fuller, 2008. "An Optimization Model for Empty Freight Car Assignment at Union Pacific Railroad," Interfaces, INFORMS, vol. 38(2), pages 89-102, April.
    18. Frisch, Sarah & Hungerländer, Philipp & Jellen, Anna & Primas, Bernhard & Steininger, Sebastian & Weinberger, Dominic, 2021. "Solving a real-world Locomotive Scheduling Problem with Maintenance Constraints," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 386-409.
    19. Zu, Yue & Heydari, Ruhollah & Chahar, Kiran & Pranoto, Yudi & Cheng, Clark, 2022. "A railcar re-blocking strategy via Mixed Integer Quadratic Programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    20. Giovanni Pantuso & Kjetil Fagerholt & Stein W. Wallace, 2016. "Uncertainty in Fleet Renewal: A Case from Maritime Transportation," Transportation Science, INFORMS, vol. 50(2), pages 390-407, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:37:y:2025:i:3:d:10.1007_s10696-024-09556-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.