IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v98y2025i8d10.1140_epjb_s10051-025-01015-z.html
   My bibliography  Save this article

Frequency-dependent synchronization in blinking networks: insights from Hindmarsh–Rose, Lorenz, and Rössler systems

Author

Listed:
  • Xianchen Wang

    (Shenzhen Polytechnic University)

  • Zhen Wang

    (Yan’an University
    Xi’an Congzheng New Energy Technology Co., Ltd.)

  • Shihong Dang

    (Institute of Electromechanical (Technician), Xianyang Vocational and Technical College)

  • Jiaxin Dai

    (South China Agricultural University)

Abstract

This study examines how the temporal structure of network couplings affects synchronization, a fundamental phenomenon in numerous real-world systems. Focusing on blinking networks, a class of time-varying networks where couplings periodically switch on and off, we compare two distinct blinking schemes across three canonical dynamical systems: the Hindmarsh–Rose, Lorenz, and Rössler systems. Using the Master Stability Function (MSF) framework, we reveal a striking contrast in synchronization behavior. When all couplings are activated simultaneously during the same portion of the blinking period, the system’s synchronization stability remains unaffected by the blinking frequency, closely resembling that of an averaged static network characterized by a linear MSF profile. In contrast, when couplings are activated sequentially within each blinking period, this linear MSF pattern emerges only at high blinking frequencies (fast blinking). At lower frequencies (slow blinking), the MSF exhibits diverse, system-specific patterns. Notably, the linear MSF pattern ensures the emergence of synchronization irrespective of the underlying structural properties. Thus, these findings offer new insights into how the temporal organization of couplings governs collective dynamics in time-varying networks, particularly in contexts where the emergence and stability of synchronization are critical. Graphical Abstract

Suggested Citation

  • Xianchen Wang & Zhen Wang & Shihong Dang & Jiaxin Dai, 2025. "Frequency-dependent synchronization in blinking networks: insights from Hindmarsh–Rose, Lorenz, and Rössler systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(8), pages 1-11, August.
  • Handle: RePEc:spr:eurphb:v:98:y:2025:i:8:d:10.1140_epjb_s10051-025-01015-z
    DOI: 10.1140/epjb/s10051-025-01015-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-025-01015-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-025-01015-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, L.Y. & Liu, Z.X. & Chen, Z.Q. & Chen, F. & Yuan, Z.Z., 2007. "Pinning control of complex dynamical networks with general topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 298-306.
    2. Guillaume Laurent & Jari Saramäki & Márton Karsai, 2015. "From calls to communities: a model for time-varying social networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(11), pages 1-10, November.
    3. Bayani, Atiyeh & Jafari, Sajad & Azarnoush, Hamed & Nazarimehr, Fahimeh & Boccaletti, Stefano & Perc, Matjaž, 2023. "Explosive synchronization dependence on initial conditions: The minimal Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Wu, Yong & Ding, Qianming & Huang, Weifang & Hu, Xueyan & Ye, Zhiqiu & Jia, Ya, 2024. "Dynamic modulation of external excitation enhance synchronization in complex neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. Louis M. Pecora & Francesco Sorrentino & Aaron M. Hagerstrom & Thomas E. Murphy & Rajarshi Roy, 2014. "Cluster synchronization and isolated desynchronization in complex networks with symmetries," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    6. Yanjie Ma & Jun Mou & Jinshi Lu & Santo Banerjee & Yinghong Cao, 2023. "A Discrete Memristor Coupled Two-Dimensional Generalized Square Hyperchaotic Maps," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(06), pages 1-10.
    7. Shir Shahal & Ateret Wurzberg & Inbar Sibony & Hamootal Duadi & Elad Shniderman & Daniel Weymouth & Nir Davidson & Moti Fridman, 2020. "Synchronization of complex human networks," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Liu, Z.X. & Chen, Z.Q. & Yuan, Z.Z., 2007. "Pinning control of weighted general complex dynamical networks with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 345-354.
    9. Yue Zhu & Chunhua Wang & Jingru Sun & Fei Yu, 2023. "A Chaotic Image Encryption Method Based on the Artificial Fish Swarms Algorithm and the DNA Coding," Mathematics, MDPI, vol. 11(3), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bayani, Atiyeh & Alexander, Prasina & Azarnoush, Hamed & Rajagopal, Karthikeyan & Jafari, Sajad & Nazarimehr, Fahimeh, 2023. "Designing networks with specific synchronization transitions independent of the system’s dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Fu, Chenbo & Wang, Jinbao & Xiang, Yun & Wu, Zhefu & Yu, Li & Xuan, Qi, 2017. "Pinning control of clustered complex networks with different size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 184-192.
    3. Li, Lixiang & Li, Weiwei & Kurths, Jürgen & Luo, Qun & Yang, Yixian & Li, Shudong, 2015. "Pinning adaptive synchronization of a class of uncertain complex dynamical networks with multi-link against network deterioration," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 20-34.
    4. Cheng, Ranran & Peng, Mingshu & Zuo, Jun, 2016. "Pinning synchronization of discrete dynamical networks with delay coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 444-453.
    5. García, P., 2022. "A machine learning based control of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Chen, Lianyu & Muthukumar, Deivasundari & Natiq, Hayder & Mehrabbeik, Mahtab & Lei, Tengfei & Jafari, Sajad, 2025. "Relay synchronization in a multiplex memristive neuronal network with electrical and field couplings," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    7. Liu, Meng & Shao, Yingying & Fu, Xinchu, 2009. "Complete synchronization on multi-layer center dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2584-2591.
    8. Cheng, Ranran & Peng, Mingshu & Yu, Weibin, 2014. "Pinning synchronization of delayed complex dynamical networks with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 426-431.
    9. Wang, Fei & Yang, Yongqing & Hu, Manfeng & Xu, Xianyun, 2015. "Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 134-143.
    10. Rakkiyappan, R. & Velmurugan, G. & Nicholas George, J. & Selvamani, R., 2017. "Exponential synchronization of Lur’e complex dynamical networks with uncertain inner coupling and pinning impulsive control," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 217-231.
    11. Huang, Changwei & Luo, Yijun & Han, Wenchen, 2023. "Cooperation and synchronization in evolutionary opinion changing rate games," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    12. Zhang, Liwen & Xiang, Linying & Zhu, Jiawei, 2022. "Relationship between fragility and resilience in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    13. Luo, Mengzhuo & Liu, Xinzhi & Zhong, Shouming & Cheng, Jun, 2018. "Synchronization of stochastic complex networks with discrete-time and distributed coupling delayed via hybrid nonlinear and impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 381-393.
    14. Tlaie, A. & Ballesteros-Esteban, L.M. & Leyva, I. & Sendiña-Nadal, I., 2019. "Statistical complexity and connectivity relationship in cultured neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 284-290.
    15. Miao, Qingying & Rong, Zhihai & Tang, Yang & Fang, Jianan, 2008. "Effects of degree correlation on the controllability of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6225-6230.
    16. Karan, Rituraj & Biswal, Bibhu, 2017. "A model for evolution of overlapping community networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 380-390.
    17. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    18. Ding, Qianming & Hu, Yipeng & Wu, Yong & Hu, Xueyan & Jia, Ya & Yang, Lijian, 2025. "Elimination of reentry spiral waves using adaptive optogenetical illumination based on dynamic learning techniques," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    19. Guy Amichay & Liang Li & Máté Nagy & Iain D. Couzin, 2024. "Revealing the mechanism and function underlying pairwise temporal coupling in collective motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Tang, Longkun & Wang, Jiadong & Liang, Jianli, 2023. "Inter-layer synchronization on a two-layer network of unified chaotic systems: The role of network nodal dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:98:y:2025:i:8:d:10.1140_epjb_s10051-025-01015-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.