Author
Listed:
- Wen-jing Lan
(Ningxia University)
- Hai-xin Li
(Ningxia University)
- Tong Du
(Ningxia University)
- Xue-ling Lin
(Ningxia University)
- Feng-chun Pan
(Ningxia University)
Abstract
The first-principles calculation method is performed to explore the monolayer 2H-MoS2:Fe semiconductors with intrinsic ferromagnetism and strong ferromagnetic coupling by strain-modulation. In this study, we demonstrate that the biaxial strain can effectively regulate the distribution of local magnetic moment, magnetic coupling ground state types and strength. The studied results indicate that one FeMo dopant will bring 2 $$\mu_{{\text{B}}}$$ μ B local magnetic moment, which is not affected by strains in range of − 6~6%. However, electronic configuration, occupation and magnetic moment distribution are closely related to strains. Moreover, smaller compressive strain can effectively strengthen ferromagnetic interactions between two FeMo substitutions, and the most energy gains of ferromagnetic coupling reach to 153.9 meV under − 2% strain. However, the ferromagnetic ground state translates into antiferromagnetic one as strain in the range of − 6~ − 2.5%. The changes in magnetic moment and magnetic interaction originate from the competition between crystal-filed splitting and spin splitting under different strains. The theoretical results presented here predict that modulating the biaxial strain could be a very significant avenue to obtain intrinsic ferromagnetic 2H-MoS2:Fe semiconductors. Graphical abstract The effect of strain on the electronic structures and magnetic properties of Fe doped monolayer 2H-MoS2 were studied by first-principles calculations. We found that electronic configuration, occupancy and magnetic moment distribution are closely related to strains. Smaller compressive strain can effectively strengthen FM interactions between two FeMo substitutions, and the most energy gains of FM coupling up to 153.9 meV under − 2% strain. However, the FM ground state translate into AFM one as strain in the range of − 6~− 2.5%. Our theoretical predictions highlight the important contribution of strain to electronic structures and magnetic properties, and present a valid avenue for the future design of high TC material in monolayer MoS2: Fe system.
Suggested Citation
Wen-jing Lan & Hai-xin Li & Tong Du & Xue-ling Lin & Feng-chun Pan, 2025.
"Strain-modulation on electronic structures and magnetic properties of Fe doped monolayer 2H-MoS2: the first-principles calculation study,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(2), pages 1-8, February.
Handle:
RePEc:spr:eurphb:v:98:y:2025:i:2:d:10.1140_epjb_s10051-025-00872-y
DOI: 10.1140/epjb/s10051-025-00872-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:98:y:2025:i:2:d:10.1140_epjb_s10051-025-00872-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.