IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v96y2023i8d10.1140_epjb_s10051-023-00583-2.html
   My bibliography  Save this article

Entanglement spectrum statistics of a time reversal invariant spin chain system: insights from random matrix theory

Author

Listed:
  • Ayana Sarkar

    (Shiv Nadar Institution of Eminence
    Département de physique and Institut Quantique, Université de Sherbrooke)

  • Santosh Kumar

    (Shiv Nadar Institution of Eminence)

Abstract

The entanglement spectrum statistics (ESS) of a disordered and generalised time reversal invariant XXZ model is inspected in the bipartite framework using exact finite-N results from the fixed trace Wishart–Laguerre (FTWL) ensemble of random matrices. Despite significant interest in entanglement spectrum of various spin models, exact finite-N RMT results had hitherto remained unutilized in the study of ESS of short and moderate sized spin chains. In this particular model, disorder has been introduced via the addition of a random z-field (transverse field), defect field at a particular site, or both. Next-nearest neighbour interactions are also put in place, to witness the effect of competing interactions on the ESS. One noteworthy feature of this model is that even in presence of the z-field, the results adhere to the orthogonal ensemble (OE) of random matrices, as a consequence of the inherent non-conventional time reversal symmetry associated with a $$\pi /2$$ π / 2 rotation about the x-axis. Additionally we examine the eigenvector statistics using the distribution of eigenvector components which as expected, follow that of the trace normalised real Ginibre matrices. The empirical results show significantly good agreement with exact RMT results of the $$\beta = 1$$ β = 1 FTWL ensemble when the system parameters are properly adjusted. In particular for fine tuning of system parameters, the smallest and largest Schmidt eigenvalue distributions, which are sensitive measures among the ESS, are in good agreement to analytical results. In some previous work its has been shown that for Hamiltonian systems, the entanglement spectrum exhibits level statistics matching RMT predictions and are governed by the same random matrix ensemble as the energy spectrum. This the authors have concluded to be an evidence in favour of a strong version of the eigenvalue thermalization hypothesis. We opine through the results of this work, that for short and moderate sized spin chains which have been bi-partitioned and therefore possesses even smaller subsystems, the information provided by just the level spacings or their ratios is insufficient to conclude whether the system is in a thermalizing or many-body localized phase. In this scenario one needs to examine other statistical measures of the Schmidt eigenvalues using exact finite-N RMT results or those from corresponding random matrix model simulations which are better suited to detect quantum chaotic behaviour for the composite as well as reduced density matrices of these systems. Graphical abstract

Suggested Citation

  • Ayana Sarkar & Santosh Kumar, 2023. "Entanglement spectrum statistics of a time reversal invariant spin chain system: insights from random matrix theory," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-14, August.
  • Handle: RePEc:spr:eurphb:v:96:y:2023:i:8:d:10.1140_epjb_s10051-023-00583-2
    DOI: 10.1140/epjb/s10051-023-00583-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-023-00583-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-023-00583-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:96:y:2023:i:8:d:10.1140_epjb_s10051-023-00583-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.