IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v95y2022i9d10.1140_epjb_s10051-022-00405-x.html
   My bibliography  Save this article

Scattering of the asymmetric $$\phi ^6$$ ϕ 6 kinks from a $${\mathcal{PT}\mathcal{}}$$ PT -symmetric perturbation: creating multiple kink–antikink pairs from phonons

Author

Listed:
  • Danial Saadatmand

    (University of Sistan and Baluchestan
    Stellenbosch University
    National Institute for Theoretical and Computational Sciences (NITheCS))

  • Aliakbar Moradi Marjaneh

    (Islamic Azad University)

Abstract

Interaction of asymmetric $$\phi ^6$$ ϕ 6 kinks with a spatially localized $${\mathcal{PT}\mathcal{}}$$ PT -symmetric perturbation is investigated numerically. It is shown that when the kink (antikink) hits the defect from the gain side, a final velocity of the kink decreases (increases), while for the kink and antikink coming from the opposite direction, their final velocities remain unchanged. It is also found that when the kink interacts with the defect from the gain side, multiple pairs of the kink–antikink are formed from small-amplitude waves (phonons) in the final states depending on the initial velocity of the initial kink and parameter of the perturbation. Graphical Abstract

Suggested Citation

  • Danial Saadatmand & Aliakbar Moradi Marjaneh, 2022. "Scattering of the asymmetric $$\phi ^6$$ ϕ 6 kinks from a $${\mathcal{PT}\mathcal{}}$$ PT -symmetric perturbation: creating multiple kink–antikink pairs from phonons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-13, September.
  • Handle: RePEc:spr:eurphb:v:95:y:2022:i:9:d:10.1140_epjb_s10051-022-00405-x
    DOI: 10.1140/epjb/s10051-022-00405-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-022-00405-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-022-00405-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Gao & E. Estrecho & K. Y. Bliokh & T. C. H. Liew & M. D. Fraser & S. Brodbeck & M. Kamp & C. Schneider & S. Höfling & Y. Yamamoto & F. Nori & Y. S. Kivshar & A. G. Truscott & R. G. Dall & E. A. Ost, 2015. "Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard," Nature, Nature, vol. 526(7574), pages 554-558, October.
    2. Marzieh Peyravi & Afshin Montakhab & Nematollah Riazi & Abdorrasoul Gharaati, 2009. "Interaction properties of the periodic and step-like solutions of the double-Sine-Gordon equation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 72(2), pages 269-277, November.
    3. Marzieh Peyravi & Nematollah Riazi & Afshin Montakhab, 2010. "Static properties of multiple-sine-Gordon systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 76(4), pages 547-555, August.
    4. Alois Regensburger & Christoph Bersch & Mohammad-Ali Miri & Georgy Onishchukov & Demetrios N. Christodoulides & Ulf Peschel, 2012. "Parity–time synthetic photonic lattices," Nature, Nature, vol. 488(7410), pages 167-171, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Jie Qian & C. H. Meng & J. W. Rao & Z. J. Rao & Zhenghua An & Yongsheng Gui & C. -M. Hu, 2023. "Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. M. Król & I. Septembre & P. Oliwa & M. Kędziora & K. Łempicka-Mirek & M. Muszyński & R. Mazur & P. Morawiak & W. Piecek & P. Kula & W. Bardyszewski & P. G. Lagoudakis & D. D. Solnyshkov & G. Malpuech , 2022. "Annihilation of exceptional points from different Dirac valleys in a 2D photonic system," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. M. Wurdack & T. Yun & M. Katzer & A. G. Truscott & A. Knorr & M. Selig & E. A. Ostrovskaya & E. Estrecho, 2023. "Negative-mass exciton polaritons induced by dissipative light-matter coupling in an atomically thin semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Wu, Zhenkun & Yang, Kaibo & Zhang, Yagang & Ren, Xijun & Wen, Feng & Gu, Yuzong & Guo, Lijun, 2022. "Nonlinear conical diffraction in fractional dimensions with a PT-symmetric optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Chenwei Lv & Ren Zhang & Zhengzheng Zhai & Qi Zhou, 2022. "Curving the space by non-Hermiticity," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    8. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Moradi Marjaneh, Aliakbar & Simas, Fabiano C. & Bazeia, D., 2022. "Collisions of kinks in deformed φ4 and φ6 models," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. A. Hashemi & K. Busch & D. N. Christodoulides & S. K. Ozdemir & R. El-Ganainy, 2022. "Linear response theory of open systems with exceptional points," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Shulin Wang & Chengzhi Qin & Weiwei Liu & Bing Wang & Feng Zhou & Han Ye & Lange Zhao & Jianji Dong & Xinliang Zhang & Stefano Longhi & Peixiang Lu, 2022. "High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Vakhnenko, Oleksiy O. & Vakhnenko, Vyacheslav O. & Verchenko, Andriy P., 2023. "Dipole–monopole alternative as the precursor of pseudo-excitonic chargeless half-mode in an integrable nonlinear exciton–phonon system on a regular one-dimensional lattice," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Yao Li & Xuekai Ma & Xiaokun Zhai & Meini Gao & Haitao Dai & Stefan Schumacher & Tingge Gao, 2022. "Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    14. Wu, Zhenkun & Yang, Kaibo & Ren, Xijun & Li, Peng & Wen, Feng & Gu, Yuzong & Guo, Lijun, 2022. "Conical diffraction modulation in fractional dimensions with a PT-symmetric potential," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    15. Li, Jiawei & Zhang, Yanpeng & Zeng, Jianhua, 2022. "Dark gap solitons in one-dimensional nonlinear periodic media with fourth-order dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    16. Zhu, Xing & Xiang, Dan & Zeng, Liangwei, 2023. "Fundamental and multipole gap solitons in spin-orbit-coupled Bose-Einstein condensates with parity-time-symmetric Zeeman lattices," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    17. Avik Dutt & Luqi Yuan & Ki Youl Yang & Kai Wang & Siddharth Buddhiraju & Jelena Vučković & Shanhui Fan, 2022. "Creating boundaries along a synthetic frequency dimension," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Mu Yang & Hao-Qing Zhang & Yu-Wei Liao & Zheng-Hao Liu & Zheng-Wei Zhou & Xing-Xiang Zhou & Jin-Shi Xu & Yong-Jian Han & Chuan-Feng Li & Guang-Can Guo, 2022. "Topological band structure via twisted photons in a degenerate cavity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Ievgen I. Arkhipov & Adam Miranowicz & Fabrizio Minganti & Şahin K. Özdemir & Franco Nori, 2023. "Dynamically crossing diabolic points while encircling exceptional curves: A programmable symmetric-asymmetric multimode switch," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Zijin Yang & Po-Sheng Huang & Yu-Tsung Lin & Haoye Qin & Jesús Zúñiga-Pérez & Yuzhi Shi & Zhanshan Wang & Xinbin Cheng & Man-Chung Tang & Sanyang Han & Boubacar Kanté & Bo Li & Pin Chieh Wu & Patrice , 2024. "Creating pairs of exceptional points for arbitrary polarization control: asymmetric vectorial wavefront modulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:95:y:2022:i:9:d:10.1140_epjb_s10051-022-00405-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.