IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v95y2022i11d10.1140_epjb_s10051-022-00424-8.html
   My bibliography  Save this article

Surface states and breaking down of spin-to-surface locking on a conical topological insulator quantum dot

Author

Listed:
  • L. G. Veiga

    (Universidade Federal de Viçosa)

  • W. A. Moura-Melo

    (Universidade Federal de Viçosa)

Abstract

We study a conical topological insulator quantum dot and we show how the cone tip affects the surface states energy spectrum. This is obtained by analytically solving the Dirac equation for these charge carries whose dynamics is restricted to the conical surface. Besides of changing the wave-functions and energy spectrum, the conical tip also yields breakdown of spin-to-surface locking in this geometry. Graphic abstract

Suggested Citation

  • L. G. Veiga & W. A. Moura-Melo, 2022. "Surface states and breaking down of spin-to-surface locking on a conical topological insulator quantum dot," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-7, November.
  • Handle: RePEc:spr:eurphb:v:95:y:2022:i:11:d:10.1140_epjb_s10051-022-00424-8
    DOI: 10.1140/epjb/s10051-022-00424-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-022-00424-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-022-00424-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:95:y:2022:i:11:d:10.1140_epjb_s10051-022-00424-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.