IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v94y2021i12d10.1140_epjb_s10051-021-00234-4.html
   My bibliography  Save this article

Empirical optimization of molecular simulation force fields by Bayesian inference

Author

Listed:
  • Jürgen Köfinger

    (Max Planck Institute of Biophysics)

  • Gerhard Hummer

    (Max Planck Institute of Biophysics
    Goethe University Frankfurt)

Abstract

The demands on the accuracy of force fields for classical molecular dynamics simulations are steadily growing as larger and more complex systems are studied over longer times. One way to meet these growing demands is to hand over the learning of force fields and their parameters to machines in a systematic (semi)automatic manner. Doing so, we can take full advantage of exascale computing, the increasing availability of experimental data, and advances in quantum mechanical computations and the calculation of experimental observables from molecular ensembles. Here, we discuss and illustrate the challenges one faces in this endeavor and explore a way forward by adapting the Bayesian inference of ensembles (BioEn) method [Hummer and Köfinger, J. Chem. Phys. (2015)] for force field parameterization. In the Bayesian inference of force fields (BioFF) method developed here, the optimization problem is regularized by a simplified prior on the force field parameters and an entropic prior acting on the ensemble. The latter compensates for the unavoidable over simplifications in the parameter prior. We determine optimal force field parameters using an iterative predictor–corrector approach, in which we run simulations, determine the reference ensemble using the weighted histogram analysis method (WHAM), and update the force field according to the BioFF posterior. We illustrate this approach for a simple polymer model, using the distance between two labeled sites as the experimental observable. By systematically resolving force field issues, instead of just reweighting a structural ensemble, the BioFF corrections extend to observables not included in ensemble reweighting. We envision future force field optimization as a formalized, systematic, and (semi)automatic machine-learning effort that incorporates a wide range of data from experiment and high-level quantum chemical calculations, and takes advantage of exascale computing resources. Graphic abstract

Suggested Citation

  • Jürgen Köfinger & Gerhard Hummer, 2021. "Empirical optimization of molecular simulation force fields by Bayesian inference," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(12), pages 1-12, December.
  • Handle: RePEc:spr:eurphb:v:94:y:2021:i:12:d:10.1140_epjb_s10051-021-00234-4
    DOI: 10.1140/epjb/s10051-021-00234-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-021-00234-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-021-00234-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:94:y:2021:i:12:d:10.1140_epjb_s10051-021-00234-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.