IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v93y2020i4d10.1140_epjb_e2020-100585-8.html
   My bibliography  Save this article

Tensor network renormalization group study of spin-1 random Heisenberg chains

Author

Listed:
  • Zheng-Lin Tsai

    (National Tsing Hua University)

  • Pochung Chen

    (National Tsing Hua University)

  • Yu-Cheng Lin

    (Graduate Institute of Applied Physics, National Chengchi University)

Abstract

We use a tensor network strong-disorder renormalization group (tSDRG) method to study spin-1 random Heisenberg antiferromagnetic chains. The ground state of the clean spin-1 Heisenberg chain with uniform nearest-neighbor couplings is a gapped phase known as the Haldane phase. Here we consider disordered chains with random couplings, in which the Haldane gap closes in the strong disorder regime. As the randomness strength is increased further and exceeds a certain threshold, the random chain undergoes a phase transition to a critical random-singlet phase. The strong-disorder renormalization group method formulated in terms of a tree tensor network provides an efficient tool for exploring ground-state properties of disordered quantum many-body systems. Using this method we detect the quantum critical point between the gapless Haldane phase and the random-singlet phase via the disorder-averaged string order parameter. We determine the critical exponents related to the average string order parameter, the average end-to-end correlation function and the average bulk spin-spin correlation function, both at the critical point and in the random-singlet phase. Furthermore, we study energy-length scaling properties through the distribution of energy gaps for a finite chain. Our results are in closer agreement with the theoretical predictions than what was found in previous numerical studies. As a benchmark, a comparison between tSDRG results for the average spin correlations of the spin-1/2 random Heisenberg chain with those obtained by using unbiased zero-temperature QMC method is also provided. Graphical abstract

Suggested Citation

  • Zheng-Lin Tsai & Pochung Chen & Yu-Cheng Lin, 2020. "Tensor network renormalization group study of spin-1 random Heisenberg chains," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(4), pages 1-10, April.
  • Handle: RePEc:spr:eurphb:v:93:y:2020:i:4:d:10.1140_epjb_e2020-100585-8
    DOI: 10.1140/epjb/e2020-100585-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2020-100585-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2020-100585-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:93:y:2020:i:4:d:10.1140_epjb_e2020-100585-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.