IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v92y2019i9d10.1140_epjb_e2019-100171-5.html
   My bibliography  Save this article

Asymmetric energy transfers in driven nonequilibrium systems and arrow of time

Author

Listed:
  • Mahendra K. Verma

    (Indian Institute of Technology)

Abstract

Fundamental interactions are either fully or nearly symmetric under time reversal. But macroscopic phenomena may have a definite arrow of time. From the perspectives of statistical physics, the direction of time is towards increasing entropy. In this paper, we provide another perspective on the arrow of time. In driven-dissipative nonequilibrium systems forced at large scale, the energy typically flows from large scales to dissipative scales. This generic and multiscale process breaks time reversal symmetry and principle of detailed balance, thus can yield an arrow of time. In this paper we propose that conversion of large-scale coherence to small-scales decoherence could be treated as a dissipation mechanism for generic physical systems. We illustrate the above processes using turbulence as an example. In the paper we also describe exceptions to the above scenario, mainly systems exhibiting no energy cascade or inverse energy cascade. Graphical abstract

Suggested Citation

  • Mahendra K. Verma, 2019. "Asymmetric energy transfers in driven nonequilibrium systems and arrow of time," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(9), pages 1-7, September.
  • Handle: RePEc:spr:eurphb:v:92:y:2019:i:9:d:10.1140_epjb_e2019-100171-5
    DOI: 10.1140/epjb/e2019-100171-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2019-100171-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2019-100171-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:92:y:2019:i:9:d:10.1140_epjb_e2019-100171-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.