IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v92y2019i8d10.1140_epjb_e2019-100209-8.html
   My bibliography  Save this article

An electronic avalanche model for metal–insulator transition in two dimensional electron gas

Author

Listed:
  • Morteza Nattagh Najafi

    (University of Mohaghegh Ardabili)

Abstract

In this paper, we present an electronic avalanche model for the transport of electrons in the disordered two-dimensional (2D) electron gas which has the potential to describe the 2D metal–insulator transition (MIT) in the zero electron–electron interaction limit. The disorder is considered to be uncorrelated-Coulomb noise with a uniform distribution. In this model we sub-divide the system to some virtual cells each of which has a linear size of the order of phase coherence length of the system. Using Thomas-Fermi-Dirac theory we propose some simple energy functions for the cells and using the thermodynamics of 2DEG we develop some rules for the charge transfer between the cells. A second order transition line arises from our model with some similarities with the experiments. The compressibility of the system also diverges on this line. We characterize this (disorder-driven) phase transition which is between the non-percolating phase and the percolating phase (in which the system shows metallic behavior) and obtain some geometrical critical exponents. The fractal dimension of the exterior frontier of the electronic avalanches on the transition line is compatible with the percolation theory, whereas the other exponents are different. The exponents are robust against disorder in the low disordered 2DEGs and change considerably in the high disordered ones. Graphical abstract

Suggested Citation

  • Morteza Nattagh Najafi, 2019. "An electronic avalanche model for metal–insulator transition in two dimensional electron gas," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(8), pages 1-28, August.
  • Handle: RePEc:spr:eurphb:v:92:y:2019:i:8:d:10.1140_epjb_e2019-100209-8
    DOI: 10.1140/epjb/e2019-100209-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2019-100209-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2019-100209-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Solid State and Materials;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:92:y:2019:i:8:d:10.1140_epjb_e2019-100209-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.